Skip to main content
Log in

Preparation and Performance of Ni-Al and 3Cr13 Coatings on Carbon Steel by Arc Spraying for Boiler Heat Exchanger Pipelines: A Comparative Study

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This study compares nickel-aluminum (Ni-Al) and 3Cr13 steel coatings deposited on carbon steel substrates by arc spraying. The objective is to select a coating that will improve the corrosion and abrasion wear resistance of boiler heat exchanger pipes. This comparison involves the study of the microstructure, phase composition, microhardness, wear and erosion, and corrosion resistance of the coatings. The corrosion resistance was evaluated based on seawater immersion, electrochemical impedance, polarization, and galvanic corrosion tests. The results showed that the Ni-Al coating had a porosity of 6.3%, while the 3Cr13 coating had a porosity of 5.2%. The average surface roughness of the 3Cr13, Ni-Al coatings, and polished substrate were 11, 14.4, and 0.13 μm, respectively. The 3Cr13 lamellar structure coating was mainly composed of the α-Fe phase and a small amount of the CrO phase, and the Ni-16wt%Al coating included a solid solution phase and a small amount of the NiO phase. During the wear tests, the Cr13 steel coating had the highest microhardness and the best abrasion resistance at room temperature at the initial stage of friction. However, its abrasion resistance was lower than that of the Ni-Al coating after a 10-min friction test. The friction coefficients of the two coatings were almost the same at 300 °C. The corrosion resistance of the Ni-Al coating was better than that of the 3Cr13 steel coating. The current density of galvanic corrosion of the 3Cr13 coating was 108 μA m-2 and that of the Ni-Al coating was 37 μA cm-2, indicating that galvanic corrosion occurred between the substrate and the coating. This comparison showed that the Ni-Al coating could provide better high-temperature abrasion resistance and anti-corrosion performance for boiler heat exchanger piping compared with the 3Cr13 steel coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R. Chandraker, A. Kumar, and R. Kumar, Hot Corrosion Behaviour of Nickel Chromium Coating at Different Temperatures (800 and 900 °C) on SA213 T91 Boiler Steel Weldments, Mater. Phys. Mech., 2012, 14(1), p 11-30.

    CAS  Google Scholar 

  2. S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High-Temperature Hot Corrosion Behavior of NiCr and Cr3C2-NiCr Coatings on T91 Boiler Steel in an Aggressive Environment at 750 °C, Surf. Coat. Technol., 2012, 206(19-20), p 3839-3850.

    Article  CAS  Google Scholar 

  3. A. Mangla, V. Chawla, and G. Singh, Comparative Hot Corrosion Behavior of HVOF and Plasma Sprayed Ni20Cr Coated T-22 Steel in Actual Coal Fired Boiler Environment, J. Eng. Sci. Res., 2017, 4(11), p 6-19.

    Google Scholar 

  4. G. Kaushal, H. Singh, and S. Prakash, High Temperature Corrosion Behaviour of HVOF-Sprayed Ni-20Cr Coating on Boiler Steel in Molten Salt Environment at 900 °C, Int. J. Surf. Sci. Eng., 2011, 5(5-6), p 415-433.

    Article  CAS  Google Scholar 

  5. P. Daram, P.R. Munroe, and C. Banjongprasert, Microstructural Evolution and Nanoindentation of NiCrMoAl Alloy Coating Deposited by Arc Spraying, Surf. Coat. Technol., 2020, 391, p 125565.

    Article  CAS  Google Scholar 

  6. V. Panwar, S. Shweta, V. Chawla, and N.K. Grover, A Comprehensive Review of Thermal Spray Coating for Coal-Fired Power Plants, IJMERT, 2017, 8(7), p 1208-1217.

    Google Scholar 

  7. B. Formanek, K. Szymański, B. Szczucka-Lasota, and A. Włodarczyk, New Generation of Protective Coatings Intended for the Power Industry, J. Mater. Process. Technol., 2005, 164-165, p 850-855.

    Article  CAS  Google Scholar 

  8. V. Boronenkov and Y. Korobov, Fundamentals of Arc Spraying: Physical and Chemical Regularities, Springer, Switzerland, 2016.

    Book  Google Scholar 

  9. S. Matthews and M. Schweizer, Optimization of Arc-Sprayed Ni-Cr-Ti Coatings for High Temperature Corrosion Applications, J. Therm. Spray Technol., 2013, 22(4), p 538-550.

    Article  CAS  Google Scholar 

  10. V.B. Chintada, R. Koona, and M. Bahubalendruni, State of Art Review on Nickel-Based Electroless Coatings and Materials, J. Bio- Tribo-Corros., 2021, 7(4), p 1-14.

    Article  Google Scholar 

  11. G. Paczkowski, The New Old Way—High-Velocity Arc Spraying Allows New Perspectives & Process Diagnostics in Open Wire Arc Spraying. in Colloquium High Velocity Oxy-Fuel Flame Spraying, 9, C. Penszior, ed. by November 8-9, 2012 (Erding, Germany, Unterschleißheim: Gemeinschaft Thermisches Spritzen c/o Linde AG, 2012) p 139-150

  12. H. Hu, L. Mao, S. Yin, H.L. Liao, and C. Zhang, Wear-Resistant Ceramic Coatings Deposited by Liquid Thermal Spraying, Ceram. Int., 2022, 48(22), p 33245-33255.

    Article  CAS  Google Scholar 

  13. W.G. Chen, Z.X. Wang, G.L. Xu, W.T. Song, Y. Xie, L. Zhao, M.H. Xia, and W. Li, Friction and Anti-Corrosion Characteristics of Arc Sprayed Al+Zn Coatings on Steel Structures Prepared in Atmospheric Environment, J. Mater. Res. Technol., 2021, 15, p 6562-6573.

    Article  CAS  Google Scholar 

  14. B. Zabala, A. Igartua, X. Fern´andez, C. Priestner, H. Ofner, O. Knaus, M. Abramczuk, P. Tribotte, F. Girot, E. Roman, and R. Nevshupa, Friction and Wear of a Piston Ring/Cylinder Liner at the Top Dead Centre: Experimental Study and Modelling, Tribol. Int., 2017, 106, p 23-33.

    Article  Google Scholar 

  15. C.B. Tang, Z.L. Liu, D.D. Cui, L.H. Yu, J.Q. Xue, and X.Y. Yin, Enhancing the Stability and Electrocatalytic Activity of Ti-Based PbO2 Anodes by Introduction of an Arc-Sprayed TiN Interlayer, Electrochim. Acta, 2021, 399, p 139398.

    Article  CAS  Google Scholar 

  16. A. Sato, Y.L. Chiu, and R.C. Reed, Oxidation of Nickel-Based Single Crystal Superalloys for Industrial Gas Turbine Applications, Acta Mater., 2011, 59(1), p 225-240.

    Article  CAS  Google Scholar 

  17. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284.

    Article  CAS  Google Scholar 

  18. K. Szymański, A. Hernas, and G. Moskal, Thermally Sprayed Coatings Resistant to Erosion and Corrosion for Power Plant Boilers—A Review, Surf. Coat. Technol., 2015, 268, p 153-164.

    Article  Google Scholar 

  19. M. Hetmańczyk, L. Swadba, and B. Mendala, Advanced Materials and Protective Coatings in Aero-Engines Application, J. Achiev. Mater. Manuf., 2007, 24(1), p 372-381.

    Google Scholar 

  20. S. Kuroda, T. Fukushima, M. Sasaki, and T. Kodama, Microstructure and Corrosion Resistance of HVOF Sprayed 316L Stainless Steel and Hastelloy C Coatings, Mater. Trans., 2002, 43(12), p 3177-3183.

    Article  CAS  Google Scholar 

  21. A. Hussinger, Analyzing the corrosion resistance of Ni-shield 200 coatings at different temperatures when exposed to sulphuric acid. BS in Materials Engineering (California Polytechnic State University, 2012)

  22. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals: From Powder to Part, Springer, New York, USA, 2014.

    Book  Google Scholar 

  23. S. Kant, M. Kumar, V. Chawla, and S. Singh, Study of High-Temperature Oxidation Behavior of Wire Arc Sprayed Coatings, Mater. Today, 2020, 21, p 1741-1748.

    CAS  Google Scholar 

  24. K. Yang, X.M. Zhou, H.Y. Zhao, and S.Y. Tao, Microstructure and Mechanical Properties of Al2O3-Cr2O3 Composite Coatings Produced by Atmospheric Plasma Spraying, Surf. Coat. Technol., 2011, 206(6), p 1362-1371.

    Article  CAS  Google Scholar 

  25. M.A. Zavareh, A. Sarhan, B.A. Razak, and W.J. Basirun, The Tribological and Electrochemical Behavior of HVOF-Sprayed Cr3C2-NiCr Ceramic Coating on Carbon Steel, Ceram. Int., 2015, 41(4), p 5387-5396.

    Article  Google Scholar 

  26. M. Bloomfield, K. Christofidou, and N. Jones, Effect of Co on the Phase Stability of CrMnFeCoxNi High Entropy Alloys Following Long-Duration Exposures at Intermediate Temperatures, Intermetallics, 2019, 114, p 106582.

    Article  CAS  Google Scholar 

  27. W. Bach, Z. Babiak, T. Rothbard, and B. Formanek, Properties of plasma and D-gun sprayed metal-matrix composite (MMC) coatings based on ceramic hard particle reinforced Fe-, Ni-aluminide matrix, in Thermal spray 2003: Advancing the science and applying the technology ed by Marple BR, Moreau C, editors, May 5-8, 2003 (Orlando, FL, ASM Thermal Spray Society, 2003)

  28. T. Keller, N. Margadant, and T. Pirling, Residual Stress Determination in Thermally Sprayed Metallic Deposits by Neutron Diffraction, Mater. Sci. Eng. A, 2004, 373(1-2), p 33-44.

    Article  Google Scholar 

  29. Y. Tian, C. Lu, Y. Shen, and X.M. Feng, Microstructure and Corrosion Property of CrMnFeCoNi High Entropy Alloy Coating on Q235 Substrate Via Mechanical Alloying Method, Surf. Interfaces, 2019, 15, p 135-140.

    Article  CAS  Google Scholar 

  30. S.K. Rai, A. Kumar, and V. Shankar, Characterization of Microstructures in Inconel 625 Using x-ray Diffraction Peak Broadening and Lattice Parameter Measurements, Scr. Mater., 2004, 51(1), p 59-63.

    Article  CAS  Google Scholar 

  31. A. Kotvitckii, G.S. Kraynova, A.M. Frolov, V. Ivanov, and S.V. Plotnikov, Influence of Fe-Co Ratio and Ni, Cr Dopants on Structural Evolution of Metallic Amorphous Alloys, Solid State Phenom., 2014, 215, p 179-184.

    Article  Google Scholar 

  32. M. Kouřil, P. Novak, and M. Bojko, Limitations of the Linear Polarization Method to Determine Stainless Steel Corrosion Rate in Concrete Environment, Cem. Concr. Compos., 2006, 28(3), p 220-225.

    Article  Google Scholar 

  33. I.C. Park and S.J. Kim, Corrosion Behavior in Seawater of Arc Thermal Sprayed Inconel 625 Coatings with Sealing Treatment, Surf. Coat. Technol., 2017, 325, p 729-737.

    Article  CAS  Google Scholar 

  34. S.F. Bonabi, F. Ashrafizadeh, and A. Sanati, Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate, J. Therm. Spray Technol., 2018, 27(3), p 524-537.

    Article  CAS  Google Scholar 

  35. X. Pang, K. Gao, and F. Luo, Annealing Effects on Microstructure and Mechanical Properties of Chromium Oxide Coatings, Thin Solid Films, 2008, 516(15), p 4685-4689.

    Article  CAS  Google Scholar 

  36. D. Landolt, S. Mischler, and M. Stemp, Electrochemical Methods in Tribocorrosion: A Critical Appraisal, Electrochim. Acta, 2001, 46(24-25), p 3913-3929.

    Article  CAS  Google Scholar 

  37. A. Ganvir, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Characterization of Microstructure and Thermal Properties of YSZ Coatings Obtained by Axial Suspension Plasma Spraying (ASPS), J. Therm. Spray Technol., 2015, 24(7), p 1195-1204.

    Article  CAS  Google Scholar 

  38. M.D. Mathew, P. Parameswaran, and K.B.S. Rao, Microstructural Changes in Alloy 625 During High-Temperature Creep, Mater. Charact., 2008, 59(5), p 508-513.

    Article  CAS  Google Scholar 

  39. A.J. Goodfellow, E.I. Galindo-Nava, K.A. Christofidou, N.G. Jonesa, C.D. Boyerb, T.L. Martinc, P.A.J. Bagotc, M.C. Hardyd, and H.J. Stonea, The Effect of Phase Chemistry on the Extent of Strengthening Mechanisms in Model Ni-Cr-Al-Ti-Mo Based Superalloys, Acta Mater., 2018, 153, p 290-302.

    Article  CAS  Google Scholar 

  40. F.K. Thomas, P. Thilo, and M. Nikolaus, Residual Stress Determination in Thermally Sprayed Metallic Deposits by Neutron Diffraction, Mater. Sci. Eng., 2004, 373(1), p 33-44.

    Google Scholar 

  41. Y. Huang and X. Peng, The Promoted Formation of an α-Al2O3 Scale on a Nickel Aluminide with Surface Cr2O3 Particles, Corros. Sci., 2016, 112, p 226-232.

    Article  CAS  Google Scholar 

  42. E.R. Sampson, Thermal Spray Coatings for Corrosion Protection: An Overview, Mater. Perform., 1997, 38(12), p 27-30.

    Google Scholar 

  43. B.A. Pint, P.F. Tortorelli, and I.G. Wright, Effect of Cycle Frequency on High-Temperature Oxidation Behavior of Alumina-Forming Alloys, Oxid. Met., 2002, 58(1-2), p 73-101.

    Article  CAS  Google Scholar 

  44. R. Starosta, Properties of Thermal Spraying Ni-Al Alloy Coatings, Adv. Mater. Sci., 2009, 9(1), p 30-40.

    Google Scholar 

  45. R.G. Davies, Influence of Martensite Composition and Content on the Properties of Dual-Phase Steels, Mater. Trans. A, 1978, 9(5), p 671-679.

    Article  Google Scholar 

  46. H.L. Tian, S.C. Wei, and Y.X. Chen, Adhesive Strength and Abrasive Property of Fe Based Composite Coating Deposited by High Velocity Arc Spraying, Mater. Res. Innov, 2014, 18(S2), p 363-367.

    Google Scholar 

  47. J.J. Kang, C.B. Wang, H.D. Wang, B.S. Xu, J.J. Liu, and G.L. Li, Characterization and Tribological Properties of Composite 3Cr13/FeS Layer, Surf. Coat. Technol., 2009, 203(14), p 1927-1932.

    Article  CAS  Google Scholar 

  48. S. Khireche, D. Boughrara, A. Kadri, L. Hamadou, and N. Benbrahim, Corrosion Mechanism of Al, Al-Zn and Al-Zn-Sn Alloys in 3 wt% NaCl Solution, Corros. Sci., 2014, 87, p 504-516.

    Article  CAS  Google Scholar 

  49. H. Berns and A. Fischer, Tribological Stability of Metallic Materials at Elevated Temperatures, Wear, 1993, 162, p 441-449.

    Article  Google Scholar 

  50. X. Ren, F. Wang, and W. Xin, High-Temperature Oxidation and Hot Corrosion Behaviors of the NiCr-CrAl Coating on A Nickel-Based Superalloy, Surf. Coat. Technol., 2005, 198(1-3), p 425-431.

    Article  CAS  Google Scholar 

  51. W.P. Wu, J.Q. Huang, and J. Nather, Texture Orientation, Morphology, and Performance of Nanocrystalline Nickel Coatings Electrodeposited from a Watts-Type Bath: Effects of H3BO3 Concentration and Plating Time, Surf. Coat. Technol., 2021, 424, p 127648.

    Article  CAS  Google Scholar 

  52. T. Poornima, J. Nayak, and A.N. Shetty, 3,4-Dimethoxybenzaldehydethiosemicarbazone as Corrosion Inhibitor for Aged 18 Ni 250 Grade Maraging Steel in 0.5M Sulfuric Acid, J. Appl. Electrochem., 2011, 41(2), p 223-233.

    Article  CAS  Google Scholar 

  53. A. Kotvitckii, G.S. Kraynova, A.M. Frolov, I. Vitaly, and S.P. Vladimir, Influence of Fe-Co Ratio and Ni, Cr Dopants on Structural Evolution of Metallic Amorphous Alloys, Solid State Phenom., 2014, 215, p 179-184.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ying Wang and Mr. Guang Yang from the Analysis and Testing Center, NERC Biomass of Changzhou University for discussion and helping in the surface roughness and XRD measurement, respectively. Ms. Jiaqi Huang thanks to the funding of Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant no. SJCX22_1429).

Author information

Authors and Affiliations

Authors

Contributions

Dr. WW: planned, wrote, and supervised this work. YZ: prepared the coatings, co-wrote and edited this paper. Dr. WW: supervised master student Mr. YZ. JH, GS, YJ and GH: performed some experiments and some tests. Prof. YZ, Dr. WW, Dr. ZW, Dr. SF and Dr. PJ: performed and analyzed characterization of materials and samples. Prof. GO and Dr. WW discussed the corrosion experiments. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Wangping Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wu, W., Huang, J. et al. Preparation and Performance of Ni-Al and 3Cr13 Coatings on Carbon Steel by Arc Spraying for Boiler Heat Exchanger Pipelines: A Comparative Study. J Therm Spray Tech 32, 1182–1199 (2023). https://doi.org/10.1007/s11666-022-01502-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01502-0

Keywords

Navigation