Skip to main content
Log in

Effect of HVOF Spraying Process on Particle Behavior of Fe-Based Amorphous Alloy Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High-velocity oxygen fuel (HVOF) spraying technology has been widely used in the surface protection and repair of metallic materials. Fe-based amorphous alloy coating is a novel protective material with excellent anti-corrosion property, high wear resistance, and neutron absorption capacity. The performance of this coating prepared by HVOF spraying mainly depends on the material parameters and particle behavior. Effect of process parameters on particle behavior is analyzed to give instruction on how to obtain high-quality amorphous coatings. CFD simulation software FLUENT is adopted to study the process of preparing Fe48Cr14Mo15C15B6Y2 amorphous alloy coatings by HVOF spraying. Influence of spraying parameters (kerosene/oxygen flow rate, particle size, spraying distance) on particle behavior (temperature, velocity, flight trajectory, radial distribution, deposition efficiency) is compared. Finally, the relationship between the HVOF spraying process and amorphous alloy coating quality is established. The low porosity Fe-based amorphous coatings were prepared by calculation-guided experiments. The study results show that the kerosene/oxygen flow rate, particle size, and spraying distance significantly impact the preparation of Fe-based amorphous alloy coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Shen, Q. Chen, J. Sun et al., Exceptionally High Glass-Forming Ability of an FeCoCrMoCBY Alloy, Appl. Phys. Lett., 2005, 86(15), 151907.

    Article  Google Scholar 

  2. F. Huang, J.J. Kang, W. Yue et al., Effect of Heat Treatment on Erosion-Corrosion of Fe-Based Amorphous Alloy Coating Under Slurry Impingement, J. Alloy. Compd., 2020, 820, 153132.

    Article  CAS  Google Scholar 

  3. J. Su, J.J. Kang, W. Yue et al., Comparison of Tribological Behavior of Fe-Based Metallic Glass Coatings Fabricated by cold Spraying and High Velocity Air Fuel Spraying, J. Non-Cryst. Solids, 2019, 522, p 11958.

    Article  Google Scholar 

  4. F. Huang, J.J. Kang, W. Yue et al., Corrosion Behavior of FeCrMoCBY Amorphous Coating Fabricated by High-Velocity Air Fuel Spraying, J. Therm. Spray Technol., 2019, 28, p 842-850.

    Article  CAS  Google Scholar 

  5. J. Kwon, H. Park, I. Lee et al., Effect of Gas Flow Rate on Deposition Behavior of Fe-Based Amorphous Alloys in Vacuum Kinetic Spray Process, Surf. Coat. Technol., 2014, 259, p 585-593.

    Article  CAS  Google Scholar 

  6. A.A. Burkov and P.G. Chigrin, Effect of Tungsten, Molybdenum, Nickel and Cobalt on the Corrosion and Wear Performance of Fe-Based Metallic Glass Coatings, Surf. Coat. Tech., 2018, 351, p 68-77.

    Article  CAS  Google Scholar 

  7. T.S. Sidhu, S. Prakash and R.D. Agrawal, Hot corrosion behaviour of HVOF-Sprayed NiCrBSi Coatings on Ni-and Fe-Based Superalloys in Na2SO4-60% V2O5 Environment at 900° C[J], Acta Mater., 2006, 54(3), p 773-784.

    Article  CAS  Google Scholar 

  8. C. Zhang, K.C. Chan, Y. Wu et al., Pitting Initiation in Fe-Based Amorphous Coatings, Acta Mater., 2012, 60(10), p 4152-4159.

    Article  CAS  Google Scholar 

  9. Y. Wu, P. Lin, G. Xie et al., Formation of Amorphous and Nanocrystalline Phases in High Velocity Oxy-Fuel Thermally Sprayed a Fe-Cr-Si-B-Mn alloy, Mater. Sci. Eng., A, 2006, 430(1-2), p 34-39.

    Article  Google Scholar 

  10. M. Cherigui, N.E. Fenineche and C. Coddet, Structural Study of Iron-Based Microstructured and Nanostructured Powders Sprayed by HVOF Thermal Spraying, Surf. Coat. Technol., 2005, 192(1), p 19-26.

    Article  CAS  Google Scholar 

  11. A.P. Wang, X.C. Chang, W.L. Hou et al., Preparation and Corrosion Behaviour of Amorphous Ni-Based Alloy Coatings, Mater. Sci. Eng. A, 2007, 449, p 277-280.

    Article  Google Scholar 

  12. J.C. Farmer, J.J. Haslam, S.D. Day et al., Corrosion Resistance of Thermally Sprayed High-Boron Iron-Based Amorphous-Metal Coatings: Fe49. 7Cr17. 7Mn1. 9Mo7. 4W1. 6B15. 2C3. 8Si2. 4, J. Mater. Res., 2007, 22(8), p 2297-2311.

    Article  CAS  Google Scholar 

  13. C. Zhang, R.Q. Guo, Y. Yang, Y. Wu and L. Liu, Influence of the Size of Spraying Powders on the Microstructure and Corrosion Resistance of Fe-Based Amorphous Coating, Electrochim. Acta, 2011, 56, p 6380-6388.

    Article  CAS  Google Scholar 

  14. J.A. Hearley, J.A. Little and A.J. Sturgeon, The Effect of Spray Parameters on the Properties of High Velocity Oxy-Fuel NiAl Intermetallic Coatings, Surf. Coat. Technol., 2000, 1999(123), p 210-218.

    Article  Google Scholar 

  15. L. Gil and H. Staia, Influence of HVOF Parameters on the Corrosion Resistance of NiWCrBSi coatings, Thin Solid Films, 2002, 420-421, p 446-454.

    Article  CAS  Google Scholar 

  16. Z. Zhou, L. Wang, F.C. Wang et al., Formation and Corrosion Behavior of Fe-Based Amorphous Metallic Coatings by HVOF Thermal Spraying, Surf. Coat. Technol., 2009, 204(5), p 563-570.

    Article  CAS  Google Scholar 

  17. S. Vignesh, K. Shanmugam, V. Balasubramanian et al., Identifying the Optical HVOF Spray in Iron Based Amorphous Metallic Coatings, Def. Technol., 2017, 13(2), p 101.

    Article  Google Scholar 

  18. D.J. Branagan, W.D. Swank and B.E. Meacham, Maximizing the Glass Fraction in Iron-Based High Velocity Oxy-Fuel Coatings, Metall. Mater. Trans. A., 2009, 40, p 1306-1313.

    Article  Google Scholar 

  19. G. Ji, O. Elkedim and T. Grosdidier, Deposition and corrosion Resistance of HVOF Sprayed Nanocrystalline Iron Aluminide Coatings, Surf. Coat. Technol., 2005, 190(2-3), p 406-416.

    Article  CAS  Google Scholar 

  20. D. Shi, M. Li and P.D. Christofides, Diamond Jet Hybrid HVOF Thermal Spray: Rule-Based Modeling of Coating Microstructure, Ind. Eng. Chem. Res., 2004, 43(14), p 3653-3665.

    Article  CAS  Google Scholar 

  21. M. Li, D. Shi and P.D. Christofides, Modeling and Control of HVOF Thermal Spray Processing of WC-Co Coatings, Powder Technol., 2005, 156(2-3), p 177-194.

    Article  CAS  Google Scholar 

  22. M. Li and P.D. Christofides, Computational Study of Particle in-Flight Behavior in the HVOF Thermal Spray Process, Chem. Eng. Sci., 2006, 61(19), p 6540-6552.

    Article  CAS  Google Scholar 

  23. S. Gu, C.N. Eastwick, K.A. Simmons et al., Computational Fluid Dynamic Modeling of Gas Flow Characteristics in a High-Velocity Oxy-Fuel Thermal Spray System, J. Therm. Spray Technol., 2001, 10(3), p 461-469.

    Article  CAS  Google Scholar 

  24. M. Jadidi, S. Moghtadernejad and A. Dolatabadi, Numerical Modeling of Suspension HVOF Spray, J. Therm. Spray Technol., 2016, 25(3), p 451-464.

    Article  CAS  Google Scholar 

  25. L. Ajdelsztajn, J. Dannenberg, J. Lopez et al., High-Velocity Oxygen Fuel Thermal Spray of Fe-Based Amorphous Alloy: A Numerical and Experimental Study, Metall. Mater. Trans. A., 2009, 40(9), p 2231-2240.

    Article  Google Scholar 

  26. N.C. Wu, K. Chen, W.H. Sun et al., Correlation Between Particle Size and Porosity of Fe-Based Amorphous Coating, Surf. Eng., 2019, 35(1), p 37-45.

    Article  Google Scholar 

  27. Farmer, J.C., Choi, J.S., and Saw, C., et al.: Iron-Based Amorphous-Metals: High-Performance Corrosion-Resistant Material (HPCRM) Development. Metallur. Mater. Transactions, vol. 40A, no. 6, June 1, 2009, pp. 1289-1305, 2008, 40(LLNL-JRNL-400358)

  28. L. Ajdelsztajn, J. Dannenberg, J. Lopez, N. Yang, J. Farmer and E.J. Lavernia, High-Velocity Oxygen Fuel Thermal Spray of Fe-Based Amorphous Alloy: A Numerical and Experimental Study, Metall. Mater. Trans. A, 2009, 40, p 2231-2240.

    Article  Google Scholar 

  29. J. Yu, X. Liu, Y. Yu, H. Li, P. Liu, R. Sun, L. Wang and P. Li, Numerical Analysis of High-Velocity Oxygen Fuel Thermal-Spray Process for Fe-Based Amorphous Coatings, Coatings, 2021, 11(12), p 1533.

    Article  CAS  Google Scholar 

  30. M. Li and P.D. Christofides, Multi-Scale Modeling and Analysis of an Industrial HVOF Thermal Spray Process, Chem. Eng. Sci., 2005, 60(13), p 3649-3669.

    Article  CAS  Google Scholar 

  31. Aldosari, M.: Comparative study of two nozzle assemblies for high velocity oxy fuel (HVOF) thermal spray coating process.[D] Dublin city university (2017)

  32. Stochastic methods in fluid mechanics[M]. Wien: Springer, (2014)

  33. T.C. Hanson and G.S. Settles, Particle Temperature and Velocity Effects on the Porosity and Oxidation of an HVOF Corrosion-Control Coating, J. Therm. Spray Technol., 2003, 12(3), p 403-415.

    Article  Google Scholar 

  34. P. Fauchais, A. Vardelle, M. Vardelle et al., Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360.

    Article  CAS  Google Scholar 

  35. C.J. Li, H.L. Liao, P. Gougeon et al., Experimental Determination of the Relationship Between Flattening Degree and Reynolds Number for Spray Molten Droplets, Surf. Coat. Technol., 2005, 191(2), p 375-383.

    Article  CAS  Google Scholar 

  36. Y. Wang, S.L. Jiang, Y.G. Zheng et al., Effect of Processing Parameters on the Microstructures and Corrosion Behaviour of High-Velocity Oxy-Fuel(HVOF) Sprayed Fe-Based Amorphous Metallic Coatings, Mater. Corros., 2013, 64(9), p 801-900.

    Article  CAS  Google Scholar 

  37. R.Q. Guo, C. Zhang, Q. Chen et al., Study of Structure and Corrosion Resistance of Fe-Based Amorphous Coatings Prepared by HVAF and HVOF[J], Corros. Sci., 2011, 53(7), p 2351-2356.

    Article  CAS  Google Scholar 

  38. G. Wang, P. Xiao, Z.J. Huang et al., Microstructure and Wear Properties of Fe-Based Amorphous Coatings Deposited by High-Velocity Oxygen Fuel Spraying, J. Iron Steel Res. (Int)., 2016, 23(7), p 699.

    Article  Google Scholar 

  39. M.J. Duarte, A. Kostka, J.A. Jimenez, P. Choi, J. Klemm, D. Crespo, D. Raabe and F.U. Renner, Crystallization, Phase Evolution and Corrosion of Fe-Based Metallic Glasses: An Atomic-Scale Structural and Chemical Characterization Study, Acta Mater., 2014, 71, p 20-30.

    Article  CAS  Google Scholar 

  40. S.D. Zhang, W.L. Zhang, S.G. Wang, X.J. Gu and J.Q. Wang, Characterisation of Three-Dimensional Porosity in an Fe-Based Amorphous Coating and its Correlation with Corrosion Behavior, Corros. Sci., 2015, 93, p 211-221.

    Article  CAS  Google Scholar 

  41. T. Kairet, M. Degrez, F. Campana et al., Influence of the Powder Size Distribution on the Microstructure of Cold-Sprayed Copper Coatings Studied by X-ray Diffraction, J. Therm. Spray Technol., 2007, 16(5), p 610-618.

    Article  CAS  Google Scholar 

  42. N. Zeoli, S. Gu and S. Kamnis, Numerical Simulation of In-Flight Particle Oxidation During Thermal Spraying, Comput. Chem. Eng., 2008, 32(7), p 1661-1668.

    Article  CAS  Google Scholar 

  43. J. Pan, S. Hu, L. Yang et al., Numerical Analysis of Flame and Particle Behavior in an HVOF Thermal Spray Process, Mater. Des., 2016, 96, p 370-376.

    Article  Google Scholar 

  44. E. Dongmo, M. Wenzelburger and R. Gadow, Analysis and Optimization of the HVOF Process by Combined Experimental and Numerical Approaches, Surf. Coat. Technol., 2008, 202(18), p 4470-4478.

    Article  CAS  Google Scholar 

  45. R. Busch, J. Schroers and W.H. Wang, Thermodynamics and Kinetics of Bulk Metallic Glass, MRS Bull., 2007, 32(8), p 620-623.

    Article  CAS  Google Scholar 

  46. B. Bochtler, O. Gross, I. Gallino et al., Thermo-Physical Characterization of the Fe67Mo6Ni3. 5Cr3. 5P12C5. 5B2. 5 Bulk Metallic Glass Forming Alloy[J], Acta Mater., 2016, 118, p 129-139.

    Article  CAS  Google Scholar 

  47. H.R. Jiang, M.L. Li, X.S. Wei et al., Numerical Investigation of In-Flight Behavior of Fe-Based Amorphous Alloy Particles in AC-HVAF Thermal Spray Process[J], J. Therm. Spray Technol., 2019, 28(6), p 1146-1159.

    Article  CAS  Google Scholar 

  48. X.Q. Liu, Y.G. Zheng, X.C. Chang et al., Microstructure and Properties of Fe-Based Amorphous Metallic Coating Produced by High Velocity Axial Plasma Spraying, J. Alloy. Compd., 2009, 484(1-2), p 300-307.

    Article  CAS  Google Scholar 

  49. S. Kamnis, S. Gu, T.J. Lu et al., Numerical Modeling the Bonding Mechanism of HVOF Sprayed Particles, Comput. Mater. Sci., 2009, 46(4), p 1038-1043.

    Article  CAS  Google Scholar 

  50. C.J. Li and Y.Y. Wang, Effect of Particle State on the Adhesive Strength of HVOF Sprayed Metallic Coating, J. Therm. Spray Technol., 2002, 11(4), p 523-529.

    Article  CAS  Google Scholar 

  51. X. Yang and S. Eidelman, Numerical Analysis of a High-Velocity Oxygen-Fuel Thermal Spray System, J. Therm. Spray Technol., 1996, 5(2), p 175-184.

    Article  CAS  Google Scholar 

  52. D. Cheng, Q. Xu, E.J. Lavernia et al., The Effect of Particle Size and Morphology on the in-Flight Behavior of Particles During High-Velocity Oxyfuel Thermal Spraying, Metall. Mater. Trans. B., 2001, 32(3), p 525-535.

    Article  Google Scholar 

  53. V.R. Srivatsan and A. Dolatabadi, Simulation of Particle-Shock Interaction in a High Velocity Oxygen Fuel Process, J. Therm. Spray Technol., 2006, 15(4), p 481-487.

    Article  CAS  Google Scholar 

  54. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, Hoboken, 2008.

    Book  Google Scholar 

  55. K.A. Khor, H. Li and P. Cheang, Significance of Melt-Fraction in HVOF Sprayed Hydroxyapatite Particles, Splats and Coatings, Biomaterials, 2004, 25(7-8), p 1177-1186.

    Article  CAS  Google Scholar 

  56. H. Zhang, Y. Xie, L. Huang et al., Effect of Feedstock Particle Sizes on Wear Resistance of Plasma Sprayed Fe-Based Amorphous Coatings, Surf. Coat. Technol., 2014, 258, p 495-502.

    Article  CAS  Google Scholar 

  57. Z. Yin, S. Tao, X. Zhou et al., Particle In-Flight Behavior and its Influence on the Microstructure and Mechanical Properties of Plasma-Sprayed Al2O3 Coatings, J. Eur. Ceram. Soc., 2008, 28(6), p 1143-1148.

    Article  CAS  Google Scholar 

  58. S.D. Zhang, J. Wu, W.B. Qi and J.Q. Wang, Effect of Porosity Defects on the Long-Term Corrosion Behaviour of Fe-Based Amorphous Alloy Coated Mild Steel, Corros. Sci., 2016, 110, p 57-70.

    Article  Google Scholar 

  59. A. Kumar, S.K. Nayak, K. Sarkar, A. Banerjee, K. Mondal and T. Laha, Investigation of Nano- and Micro-Scale Structural Evolution and Resulting Corrosion Resistance in Plasma Sprayed Fe-Based (Fe-Cr-B-C-P) Amorphous Coatings, Surf. Coat. Technol., 2020, 397, 126058.

    Article  CAS  Google Scholar 

  60. D.D. Coimbrão, G. Zepon, G.Y. Koga, D.A. Godoy Pérez, F.H. Paes de Almeida, V. Roche, J.C. Lepretre, A.M. Jorge, C.S. Kiminami, C. Bolfarini et al., Corrosion Properties of Amorphous, Partially, and Fully Crystallized Fe68Cr8Mo4Nb4B16 Alloy, J. Alloys Compd., 2020, 826, p 154123.

    Article  Google Scholar 

  61. Y. Yang, C. Zhang, Y. Peng, Y. Yu and L. Liu, Effects of Crystallization on the Corrosion Resistance of Fe-Based Amorphous Coatings, Corros. Sci., 2012, 59, p 10-19.

    Article  CAS  Google Scholar 

  62. Y. Niu, X. Zheng, X. Liu et al., Influence of Powder Size on Characteristics of Air Plasma Sprayed Silicon Coatings, Ceram. Int., 2012, 38(7), p 5897-5905.

    Article  CAS  Google Scholar 

  63. C. Zhang, R.Q. Guo, Y. Yang et al., Influence of the Size of Spraying Powders on the Microstructure and Corrosion Resistance of Fe-Based Amorphous Coating, Electrochim. Acta, 2011, 56(18), p 6380-6388.

    Article  CAS  Google Scholar 

  64. S.S. Bang, Y.C. Park, J.W. Lee et al., Effect of the Spray Distance on the Properties of High Velocity Oxygen-Fuel ( HVOF) Sprayed WC-12Co Coatings [J], J. Nanosci. Nanotechnol., 2018, 18(3), p 1931-1934. https://doi.org/10.1166/jnn.2018.14990

    Article  CAS  Google Scholar 

  65. P. Bansal, P.H. Shipway and S.B. Leen, Residual Stresses In High-Velocity Oxy-Fuel Thermally Sprayed Coatings-Modelling The Effect of Particle Velocity And Temperature During The Spraying Process[J], Acta Mater., 2007, 55(15), p 5089-5101.

    Article  CAS  Google Scholar 

  66. Y. Yang, C. Zhang, Y. Peng et al., Effects of Crystallization on the Corrosion Resistance of Fe-Based Amorphous Coatings, Corros. Sci., 2012, 59, p 10-19.

    Article  CAS  Google Scholar 

  67. M.J. Duarte, A. Kostka, D. Crespo et al., Kinetics and Crystallization Path of a Fe-Based Metallic Glass Alloy, Acta Mater., 2014, 71, p 20-30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (Grant No. 52071234), National Natural Science Foundation of China (Grant No. 51879189), National Natural Science Foundation of China for Innovative Research Groups(Grant No. 51321065), Tianjin Postgraduate Scientific research innovation project(Grant No. 2021YJSB143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Liu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Liu, X., Yu, Y. et al. Effect of HVOF Spraying Process on Particle Behavior of Fe-Based Amorphous Alloy Coatings. J Therm Spray Tech 31, 2448–2462 (2022). https://doi.org/10.1007/s11666-022-01476-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01476-z

Keywords

Navigation