Skip to main content
Log in

Microstructure and Tribological Properties of FeCoCrNi High-Entropy Alloy Coatings Fabricated by Atmospheric Plasma Spraying

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work aims to investigate microstructure and wear resistance of FeCoCrNi high-entropy alloy (HEA) coatings prepared by atmospheric plasma spraying (APS) at different spray powers. The density of the coatings is proportional to the spray power in the range of 15-25 kW. The room-temperature wear resistance of FeCoCrNi HEA coating sprayed under 25 kW power was the best with friction coefficient, wear rate and wear track depth to be (0.61 ± 0.02), (5.32 ± 0.02) × 10−5 mm3/(N·m) and (88.1 ± 10) μm, respectively. Abrasive wear, adhesive wear and plastic deformation were identified as the main wear mechanisms. Nano-mechanical properties of in situ formed oxides were much higher than those of metallic phases of HEA coating and feedstock. The friction coefficient, wear track depth and width, wear rate and wear mass loss of coated samples at 25 kW were first increased with temperature and then falling down at higher temperature. Main oxidation wear, supplemented with abrasive wear, adhesive wear and fatigue wear, was occurred during high temperature (≥ 400 °C) wear test. The wear resistance of HEA coatings was improved at high temperature attributed to solid lubrication from continuous oxide films formed on the worn surfaces of HEA coatings and Si3N4 balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303.

    Article  CAS  Google Scholar 

  2. Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui, A Refractory Hf25Nb25Ti25Zr25 High-Entropy Alloy with Excellent Structural Stability and Tensile Properties, Mater. Lett., 2014, 130, p 277–280.

    Article  CAS  Google Scholar 

  3. N.D. Stepanov, NYu. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev, Aging Behavior of the HfNbTaTiZr High Entropy Alloy, Mater. Lett., 2018, 211, p 87–90.

    Article  CAS  Google Scholar 

  4. W. Li, P. Liu, and P.K. Liaw, Microstructure and Properties Of High-Entropy Alloy Films or Coatings: A Review, Mater. Res. Lett., 2018, 6, p 199–229.

    Article  CAS  Google Scholar 

  5. X.W. Qiu, Microstructure and Properties of AlCrFeNiCoCu High entropy Alloy Prepared by Powder Metallurgy, J. Alloys Compd., 2013, 555, p 246–249.

    Article  CAS  Google Scholar 

  6. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Mechanical Properties, Microstructure and Thermal Stability of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy After Severe Plastic Deformation, Acta Mater., 2015, 96, p 258–268.

    Article  CAS  Google Scholar 

  7. Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, and Z.P. Lu, Enhanced Strength and Ductility in a High-Entropy Alloy via Ordered Oxygen Complexes, Nature, 2018, 563, p 546–550.

    Article  CAS  Google Scholar 

  8. M. Löbel, T. Lindner, and T. Lampke, High-Temperature Wear Behaviour of AlCoCrFeNiTi0.5 Coatings Produced by HVOF, Surf. Coat. Technol., 2020, 403, p 126379.

    Article  Google Scholar 

  9. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61, p 5743–5755.

    Article  CAS  Google Scholar 

  10. Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-Dependent Plasticity in an Nb25Mo25Ta25W25 Refractory High-Entropy Alloy, Acta Mater., 2014, 65, p 85–97.

    Article  CAS  Google Scholar 

  11. M.C. Gao, and D.E. Alman, Searching for Next Single-Phase High-Entropy Alloy Compositions, Entropy, 2013, 15, p 4504–4519.

    Article  CAS  Google Scholar 

  12. A. Manzoni, H. Daoud, R.U. Glatzel, and N. Wanderka, Influence of W, Mo and Ti Trace Elements on the Phase Separation in Al8Co17Cr17Cu8Fe17Ni33 Based High Entropy Alloy, Ultramicroscopy, 2013, 132, p 212–215.

    Article  CAS  Google Scholar 

  13. V. Dolique, A.L. Thomann, P. Brault, and Y. Tessier, Complex Structure/Composiiton Relationship in Thin Films of AlCoCrCuFeNi High Entropy Alloy, Mater. Chem. Phys., 2009, 117, p 142–147.

    Article  CAS  Google Scholar 

  14. Z.P. Tong, X.D. Ren, J.F. Jiao, W.F. Zhou, Y.P. Ren, Y.X. Ye, E.A. Larson, and J.Y. Gu, Laser Additive Manufacturing of FeCrCoMnNi High-Entropy Alloy: Effect of Heat Treatment on Microstructure, Residual Stress and Mechanical Property, J. Alloys Compd., 2019, 785, p 1144–1159.

    Article  CAS  Google Scholar 

  15. N. Li, S.X. Wu, D. Ouyang, J.J. Zhang, and L. Liu, Fe-Based Metallic Glass Reinforced FeCoCrNiMn High Entropy Alloy Through Selective Laser Melting, J. Alloys Compd., 2020, 822, 153695.

    Article  CAS  Google Scholar 

  16. K.X. Zhou, J.J. Li, L.L. Wang, and H.O. Yang, Direct Laser Deposited Bulk CoCrFeNiNbx High Entropy Alloys, Intermetallics, 2019, 114, 106592.

    Article  CAS  Google Scholar 

  17. L.Z. Medina, L. Riekehr, and U. Jansson, Phase Formation In Magnetron Sputtered CrMnFeCoNi High Entropy Alloy, Surf. Coat. Technol., 2020, 403, p 126323.

    Article  Google Scholar 

  18. W.B. Liao, S. Lan, L.B. Gao, H.T. Zhang, S. Xu, J. Song, X.L. Wang, and Y. Lu, Nanocrystalline High-Entropy Alloy (CoCrFeNiAl0.3) Thin-Film Coating by Magnetron Sputtering, Thin Solid Films, 2017, 638, p 383–388.

    Article  CAS  Google Scholar 

  19. J.Y. Wang, B.S. Zhang, Y.Q. Yu, Z.J. Zhang, S.S. Zhu, X. Lou, and Z.Z. Wang, Study of High Temperature Friction And Wear Performance of (CoCrFeMnNi)85Ti15 High-Entropy Alloy Coating Prepared By Plasma Cladding, Surf. Coat. Technol., 2020, 384, 125337.

    Article  CAS  Google Scholar 

  20. F.X. Ye, Z.P. Jiao, and Y.H. Yuan, Precipitation Behaviors and Properties of Micro-Beam Plasma Arc Cladded CoCrFeMnNi High-Entropy Alloy at Elevated Temperatures, Mater. Chem. Phys., 2019, 236, 121801.

    Article  CAS  Google Scholar 

  21. S.S. Zhu, Y.Q. Yu, B.S. Zhang, Z.J. Zhang, X. Yan, and Z.Z. Wang, Microstructure and Wear Behaviour of In-Situ TiN-Al2O3 Reinforced CoCrFeNiMn High-Entropy Alloys Composite Coatings Fabricated by Plasma Cladding, Mater. Lett., 2020, 272, 127870.

    Article  CAS  Google Scholar 

  22. Z.Q. Fu, W.P. Chen, H.Q. Xiao, L.W. Zhou, D.Z. Zhu, and S.F. Yang, Fabrication and Properties of Nanocrystalline Co0.5FeNiCrTi0.5 High Entropy Alloy by MA–SPS Technique, Mater. Design, 2013, 44, p 535–539.

    Article  CAS  Google Scholar 

  23. Y.K. Xiao, X.H. Peng, and T. Fu, A Novel High-Entropy Alloy with Multi-Scale Precipitates and Excellent Mechanical Properties Fabricated by Spark Plasma Sintering, Adv. Powder Technol., 2022, 33, 103520.

    Article  CAS  Google Scholar 

  24. K.R. Rao, and S.K. Sinha, Effect of Sintering Temperature on Microstructural and Mechanical Properties of SPS Processed CoCrCuFeNi Based ODS High Entropy Alloy, Mater. Chem. Phys., 2020, 256, 123709.

    Article  CAS  Google Scholar 

  25. L.J. Chen, K. Bobzin, Z. Zhou, L.D. Zhao, M. Öte, T. Königstein, Z. Tan, and D.Y. He, Wear Behavior of HVOF-Sprayed Al0.6TiCrFeCoNi High Entropy Alloy Coatings at Different Temperatures, Surf. Coat. Technol., 2019, 358, p 215–222.

    Article  CAS  Google Scholar 

  26. Z. Wei, Y.P. Wu, S. Hong, J.B. Cheng, L. Qiao, J. Cheng, and S.S. Zhu, Ultrasonic Cavitation Erosion Behaviors of High-Velocity Oxygen-Fuel (HVOF) Sprayed AlCoCrFeNi High-Entropy Alloy Coating in Different Solutions, Surf. Coat. Technol., 2021, 409, 126899.

    Article  CAS  Google Scholar 

  27. Z. Wei, Y.P. Wu, S. Hong, J.B. Cheng, L. Qiao, J. Cheng, and S.S. Zhu, Effect of WC-10Co on Cavitation Erosion Behaviors of AlCoCrFeNi Coatings Prepared by HVOF Spraying, Ceram. Int., 2021, 47, p 15121–15128.

    Article  CAS  Google Scholar 

  28. W.B. Liao, Z.X. Wu, W.J. Lu, M.J. He, T. Wang, Z.X. Guo, and J.J. Huang, Microstructures and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy Coatings by Detonation Spraying, Intermetallics, 2021, 132, 107138.

    Article  CAS  Google Scholar 

  29. A.O. Moghaddam, M. Samodurova, D. Mikhailov, and E. Trofimov, High Entropy Intermetallic Coatings Fabricated by Detonation Spraying, Mater. Lett., 2022, 311, 131560.

    Article  Google Scholar 

  30. S. Yin, W.Y. Li, B. Song, X.C. Yan, M. Kuang, Y.X. Xu, K. Wen, and R. Lupoi, Deposition of FeCoNiCrMn High Entropy Alloy (HEA) Coating Via Cold Spraying, J. Mater. Sci. Technol., 2019, 35, p 1003–1007.

    Article  CAS  Google Scholar 

  31. Y.X. Xu, W.Y. Li, L.Z. Qu, X.W. Yang, B. Song, R. Lupoi, and S. Yin, Solid-State Cold Spraying of FeCoCrNiMn High-Entropy Alloy: An Insight Into Microstructure Evolution And Oxidation Behavior at 700–900°C, J. Mater. Sci. Technol., 2021, 68, p 172–183.

    Article  CAS  Google Scholar 

  32. D.F. Rojas, H.Y. Li, O.K. Orhan, C.W. Shao, J.D. Hogan, and M. Ponga, Mechanical And Microstructural Properties of a CoCrFe075NiMo03Nb0125 High-Entropy Alloy Additively Manufactured Via Cold-Spray, J. Alloys Compd., 2022, 893, p 162309.

    Article  CAS  Google Scholar 

  33. Y.M. Zou, Z.G. Qiu, C.J. Huang, D.C. Zeng, R. Lupoi, N.N. Zhang, and S. Yin, Microstructure and Tribological Properties of Al2O3 Reinforced FeCoNiCrMn High Entropy Alloy Composite Coatings by Cold Spray, Surf. Coat. Technol., 2022, 434, 128205.

    Article  CAS  Google Scholar 

  34. F.X. Ye, Y. Yang, Z. Lou, L.Z. Feng, L. Guo, and J.X. Yu, Micro Structure and Wear Resistance of TiC Reinforced AlCoCrFeNi2.1 Eutectic High Entropy Alloy Layer Fabricated by Micro-Plasma Cladding, Mater. Lett., 2021, 284, p 128859.

    Article  CAS  Google Scholar 

  35. W. Xin, Y.J. Wang, S.C. Wei, B. Wang, Y. Liang, Y. Yuan, and B.S. Xu, Research Progress of The Preparation of High Entropy Alloy Coatings By Spraying, Chin. J. Eng., 2021, 43, p 170–178.

    CAS  Google Scholar 

  36. L.H. Tian, J.C. Wang, Q. Zhang, R.T. Li, and C. Liu, Microstructure Characterization of AlCoCrFeNiTi High-Entropy Alloy Coating Produced by Atmospheric Plasma Spraying, Mater. Res. Express, 2019, 6, 116416.

    Article  CAS  Google Scholar 

  37. Y.K. Mu, L.B. Zhang, L. Xu, K. Prashanth, N.Z. Zhang, X.D. Ma, Y.F. Jia, Y.L. Xu, Y.D. Jia, and G. Wang, Frictional Wear and Corrosion Behavior of AlCoCrFeNi High-Entropy Alloy Coatings Synthesized by Atmospheric Plasma Spraying, Entropy, 2020, 22, p 22070740.

    Article  Google Scholar 

  38. J.K. Xiao, H. Tan, Y.Q. Wu, J. Chen, and C. Zhang, Microstructure and Wear Behavior of FeCoNiCrMn High Entropy Alloy Coating Deposited by Plasma Spraying, Surf. Coat. Technol., 2020, 385, 125430.

    Article  CAS  Google Scholar 

  39. J.K. Xiao, T.T. Li, Y.Q. Wu, J. Chen, and C. Zhang, Microstructure and Tribological Properties of Plasma-Sprayed CoCrFeNi-based High-Entropy Alloy Coatings Under Dry and Oil-Lubricated Sliding Conditions, J. Therm. Spray Technol., 2021, 30, p 926–936.

    Article  CAS  Google Scholar 

  40. L.H. Tian, W. Xiong, C. Liu, S. Lu, and M. Fu, Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating, J. Mater. Eng. Perform., 2016, 25, p 5513–5521.

    Article  CAS  Google Scholar 

  41. D.Y. Lin, N.N. Zhang, B. He, B.Q. Jin, Y. Zhang, D.Y. Li, and F.F. Dong, Influence of Laser Re-Melting and Vacuum Heat Treatment on Plasma-Sprayed FeCoCrNiAl Alloy Coatings, J. Iron Steel Res. Int., 2017, 24, p 1199–1205.

    Article  Google Scholar 

  42. A. Meghwal, A. Anupam, V. Luzin, C. Schulz, C. Hall, B.S. Murty, R.S. Kottada, C.C. Berndt, and A.S.M. Ang, Multiscale Mechanical Performance and Corrosion Behaviour of Plasma Sprayed AlCoCrFeNi High-Entropy Alloy Coatings, J. Alloys Compd., 2021, 854, 157140.

    Article  CAS  Google Scholar 

  43. W.L. Hsu, H. Murakami, J.W. Yeh, A.C. Yeh, and K. Shimoda, On the Study of Thermal-Sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA Overlay Coating, Surf. Coating Technol., 2017, 316, p 71–74.

    Article  CAS  Google Scholar 

  44. B.Q. Jin, N.N. Zhang, S. Guan, Y. Zhang, and D.Y. Li, Microstructure and Properties of Laser Re-Melting FeCoCrNiAl0.5Six Highentropy Alloy Coatings, Surf. Coating Technol., 2018, 349, p 867–873.

    Article  CAS  Google Scholar 

  45. P.Y. Shi, Y. Yu, N.N. Xiong, M.Z. Liu, Z.H. Qiao, G.W. Yi, Q.Q. Yao, G.P. Zhao, E.Q. Xie, and Q.H. Wang, Microstructure and Tribological Behavior of a Novel Atmospheric Plasma Sprayed AlCoCrFeNi High Entropy Alloy Matrix Self-Lubricating Composite Coatings, Tribol. Int., 2020, 151, 106470.

    Article  CAS  Google Scholar 

  46. J.K. Xiao, Y.Q. Wu, J. Chen, and C. Zhang, Microstructure and Tribological Properties of Plasma Sprayed FeCoNiCrSiAlx High Entropy Alloy Coatings, Wear, 2020, 448–449, 203209.

    Article  Google Scholar 

  47. W.R. Wang, W. Qi, L. Xie, X. Yang, J.T. Li, and Y. Zhang, Microstructure and Corrosion Behavior of (CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated by Plasma Spraying, Materials, 2019, 12, p 12050694.

    Google Scholar 

  48. A. Anupam, R.S. Kottada, S. Kashyap, A. Meghwal, B.S. Murty, C.C. Berndt, and A.S.M. Ang, Understanding the Microstructural Evolution of High Entropy Alloy Coatings Manufactured by Atmospheric Plasma Spray Processing, Appl. Surf. Sci., 2020, 505, 144117.

    Article  CAS  Google Scholar 

  49. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, R.S. Kottada, and B.S. Murty, Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A, 2015, 46, p 791–800.

    Article  CAS  Google Scholar 

  50. L. Avril, B. Courant, and J.J. Hantzpergue, Tribological Performance of α-Fe(Cr)-Fe2B-FeB and α-Fe(Cr)-h-BN Coatings Obtained by Laser Melting, Wear, 2006, 260, p 351–360.

    Article  CAS  Google Scholar 

  51. Z.Y. Zhou, X.B. Liu, S.G. Zhuang, X.H. Yang, M. Wang, and C.F. Sun, Preparation and High Temperature Tribological Properties of Laser In-Situ Synthesized Self-Lubricating Composite Coatings Containing Metal Sulfides on Ti6Al4V Alloy, Appl. Surf. Sci., 2019, 481, p 209–218.

    Article  CAS  Google Scholar 

  52. S.S. Zhu, Z.J. Zhang, B.S. Zhang, Y.Q. Yu, Z.Z. Wang, X.C. Zhang, and B. Lu, Microstructure and Properties of Al2O3–13wt.%TiO2-Reinforced CoCrFeMnNi High-Entropy Alloy Composite Coatings Prepared by Plasma Spraying, J. Therm. Spray Technol., 2021, 30, p 772–786.

    Article  CAS  Google Scholar 

  53. B.Y. Wang, L. Lu, W.H. Wu, and B. Wang, The Research Progress of Powder Preparation Technology By Gas Atomization, Powder Metall. Indus., 2019, 29, p 74–80.

    Google Scholar 

  54. Y.B. Peng, W. Zhang, T.C. Li, M.Y. Zhang, B. Liu, Y. Liu, L. Wang, and S.H. Hu, Effect of WC Content on Microstructures and Mechanical Properties of FeCoCrNi High-Entropy Alloy/WC Composite Coatings by Plasma Cladding, Surf. Coat. Technol., 2020, 385, 125326.

    Article  CAS  Google Scholar 

  55. Y. Dong, K.Y. Zhou, Y.P. Lu, X.X. Gao, T.M. Wang, and T.J. Li, Effect of Vanadium Addition on The Microstructure and Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2014, 57, p 67–72.

    Article  CAS  Google Scholar 

  56. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1158.

    Article  CAS  Google Scholar 

  57. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, JOM, 2013, 65, p 1780–1789.

    Article  CAS  Google Scholar 

  58. M.J. Yao, K.G. Pradeep, C.C. Tasan, D. Raabe, and A. Novel, Single Phase, Non-Equiatomic Femnnicocr High-Entropy Alloy With Exceptional Phase Stability And Tensile Ductility, Scripta Mater., 2014, 72–73, p 5–8.

    Article  Google Scholar 

  59. Y.S. Geng, H. Tan, J. Cheng, J. Chen, Q.C. Sun, S.Y. Zhu, and J. Yang, Microstructure, Mechanical and Vacuum High Temperature Tribological Properties of AlCoCrFeNi High Entropy Alloy Based Solid-Lubricating Composites, Tribol. Int., 2020, 151, 106444.

    Article  CAS  Google Scholar 

  60. G.M. Pharr, Measurement of Mechanical Properties by Ultra-Low Load Indentation, Mater. Sci. Eng. A, 1998, 253, p 151–159.

    Article  Google Scholar 

  61. L.B. Wang, L. Qin, J.Q. Wen, and X.F. Ding, Measurement of Nano Hardness and Elastic Modulus of Surface Oxidation Film on NiTi Shape Memory Alloy by Nano-Indentation, Hot Work. Technol., 2019, 48, p 182–187.

    Google Scholar 

  62. J.B. Cheng, X.B. Liang, and B.S. Xu, Devitrification of Arc-Sprayed FeBSiNb Amorphous Coatings: Effects on Wearresistance and Mechanical Behavior, Surf. Coat. Technol., 2013, 235, p 720–726.

    Article  CAS  Google Scholar 

  63. T.C. Li, Y. Liu, B. Liu, W.M. Guo, and L.Y. Xu, Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes, Coatings, 2017, 7, p 7090151.

    Article  Google Scholar 

  64. L.L. Wang, Z.N. Gao, M.Y. Wu, F. Weng, and X.H. Zhan, Influence of Specific Energy on Microstructure And Properties of Laser Cladded FeCoCrNi High Entropy Alloy, Metals, 2020, 10, p 10111464.

    Article  Google Scholar 

  65. Y.M. Wang, W. Zhang, D.Q. Chen, X.B. Liu, W. Hu, L.F. Liu, J.H. Yan, and X. Xiong, High Temperature Friction and Wear Performance of TiB2-50Ni Composite Coating Sprayed by HVOF Technique, Surf. Coat. Technol., 2021, 407, 126766.

    Article  CAS  Google Scholar 

  66. S.Y. Liu, Y.B. Peng, Y. Zhang, Y.M. Wang, W.J. Fan, A.D. Wang, W. Zhang, Y.N. Tan, Q.Y. Ma, and Y. Lan, Effect of Nanostructure on Wear and Corrosion Behavior of HVAF-Sprayed Eutectic High-Entropy Alloy Coatings, J. Therm. Spray Technol., 2022, 31, p 1252–1262.

    Article  CAS  Google Scholar 

  67. L. Xie, X. Xiong, Y. Zeng, and Y.M. Wang, The Wear Properties and Mechanism of Detonation Sprayed Iron-Based Amorphous Coating, Surf. Coat. Technol., 2019, 366, p 146–155.

    Article  CAS  Google Scholar 

  68. L. Xie, Y.M. Wang, X. Xiong, and Z.K. Chen, Comparison of Microstructure and Tribological Properties of Plasma, High Velocity Oxy-Fuel and Detonation Sprayed Coatings from an Iron-Based Powder, Mater. Trans., 2018, 59, p 1591–1595.

    Article  CAS  Google Scholar 

  69. H. Liu, J. Liu, P.J. Chen, and H.F. Yang, Microstructure and High Temperature wear Behaviour of In-Situ TiC Reinforced AlCoCrFeNi-Based High-Entropy Alloy Composite Coatings Fabricated by Laser Cladding, Optic. Laser Technol., 2019, 118, p 140–150.

    Article  CAS  Google Scholar 

  70. L.H. Tian, Z.K. Feng, and W. Xiong, Microstructure, Microhardness, and Wear Resistance of AlCoCrFeNiTi/Ni60 Coating by Plasma Spraying, Coatings, 2018, 8, p 8030112.

    Article  Google Scholar 

  71. L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of Temperature on the Tribological Behavior of Al0.25CoCrFeNi High-Entropy Alloy, J. Mater Sci. Technol., 2019, 35, p 917–925.

    Article  CAS  Google Scholar 

  72. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, and D. Fabijanic, The Sliding Wear Behaviour of CoCrFeMnNi and AlxCoCrFeNi High Entropy Alloys at Elevated Temperatures, Wear, 2019, 428–429, p 32–44.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 51701072, and Grant No. 52011530147), Natural Science Foundation of Hunan Province of China (Grant No. 2021JJ50025), Key Research and Development Program of Hunan Province of China (2022GK2030), Youth Innovation Foundation of Jihua Laboratory (X201211XJ200), Military and Civilian Integration Industry Development Special Foundation of Hunan Province (Grant No. 2016B116J1).

Author information

Authors and Affiliations

Authors

Contributions

YW carried out main work of this paper including experimental design, experimental data processing, original draft preparation and acting as corresponding author during submitting and revision. LX focused on technical guidance during APS and coating sample preparation. XW was devoted to reference inquiry and manuscript revision. CL completed part of experiments including nano-indentation test, friction and wear test. PZ undertook sample analysis and test including SEM and XRD etc.

Corresponding author

Correspondence to Y. M. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.M., Xie, L., Wu, X.L. et al. Microstructure and Tribological Properties of FeCoCrNi High-Entropy Alloy Coatings Fabricated by Atmospheric Plasma Spraying. J. of Materi Eng and Perform 32, 3475–3486 (2023). https://doi.org/10.1007/s11665-022-07331-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07331-0

Keywords

Navigation