Skip to main content
Log in

Ceramic Coatings Deposited from Fine Particles by Different Spraying Processes

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Plasma spraying of fine particles promises uniform microstructure and improved properties for ceramic coatings due to the formation of small splats with reduced residual stress and pore size. Although spraying fine particles is challenging due to the poor rheological properties of particles (e.g., low flowability and agglomeration), the potential improvements to the coatings make it an attractive option. In this study, we discussed the feasibility of fine particle spraying via three different spraying techniques, namely low-power direct current (DC) plasma spraying, axial suspension plasma spraying (ASPS), and plasma-assisted aerosol deposition or hybrid aerosol deposition (HAD). Low-power DC plasma was sufficient to melt and deposit fine particles in an ambient atmosphere without using a liquid carrier. The fabricated coatings had similar features to those of ASPS coatings of small splats (5–8 µm in diameter without internal cracks). The fabricated coatings by the low-power DC plasma showed almost equivalent properties to that of the conventional plasma-sprayed coating while providing low energy consumption. Fine particles deposited via the HAD process led to the coatings with improved microstructure without pores or cracks. During the HAD process, particle melting was not required for deposition, and using the plasma assisted the surface activation and improved the deposition efficiency of the aerosol deposition process. The fabricated HAD coating revealed improved microstructure with the highest hardness, Young’s modulus, and adhesion strength and lack of pores or cracks compared to the coatings fabricated by other plasma spray techniques. In addition, similarities and differences among the techniques for spraying fine ceramic particles were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10, p 44-66

    Article  CAS  Google Scholar 

  2. A.J. Allen, G.G. Long, H. Boukari, J. Ilavsky, A. Kulkarni, S. Sampath, H. Herman, and A.N. Goland, Microstructural Characterization Studies to Relate the Properties of Thermal-Spray Coatings to Feedstock and Spray Conditions, Surf. Coat. Technol., 2001, 146–147, p 544-552

    Article  Google Scholar 

  3. M. Vardelle, A. Vardelle, P. Fauchais, K.-I. Li, B. Dussoubs, and N.J. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10(2), p 267-284

    Article  CAS  Google Scholar 

  4. M. Shahien, M. Yamada, T. Yasui, and M. Fukumoto, Reactive Plasma Spraying of Fine Al2O3/AlN Feedstock Powder, J. Therm. Spray Technol., 2013, 22(8), p 1283-1293

    Article  CAS  Google Scholar 

  5. M. Shahien, M. Yamada, and M. Fukumoto, Influence of Transient Liquid Phase Promoting Additives Upon Reactive Plasma Spraying of AlN Coatings and Its Properties, Adv. Eng. Mater., 2018, 20(6), p 1700917. https://doi.org/10.1002/adem.201700917

    Article  CAS  Google Scholar 

  6. M. Gell, Application Opportunities for Nanostructured Materials and Coatings, Mater. Sci. Eng., 1995, 204(1), p 246-251

    Article  Google Scholar 

  7. J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, and H. Herman, Preparation of Nanophase Materials by Thermal Spray Processing of Liquid Precursors, Nanostruct. Mater., 1997, 8(1), p 61-74

    Article  CAS  Google Scholar 

  8. R. Fauchais, V. Etchart-Salas, J.-F. Rat, N. Coudert, K. Caron, and Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  CAS  Google Scholar 

  9. M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coat. Technol., 2001, 146–147, p 48-54

    Article  Google Scholar 

  10. O. Racek, C.C. Berndt, D.N. Guru, and J. Heberlein, Nanostructured and Conventional YSZ Coatings Deposited Using APS and TTPR Techniques, Surf. Coat. Technol., 2006, 201, p 338-346

    Article  CAS  Google Scholar 

  11. R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nano-structured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16(1), p 40-63

    Article  CAS  Google Scholar 

  12. F. Gitzhofer, E. Bouyer, and M.I. Boulos, Suspension plasma spraying. US Patent 5 609 921, 3 November 1997

  13. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203, p 2807-2829

    Article  CAS  Google Scholar 

  14. A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20(4), p 677-695

    Article  Google Scholar 

  15. M. Shahien and M. Suzuki, Low Power Consumption Suspension Plasma Spray System for Ceramic Coating Deposition, Surf. Coat. Technol., 2017, 318, p 11-17

    Article  CAS  Google Scholar 

  16. M. Shahien, M. Suzuki, and Y. Tsutai, Controlling the Coating Microstructure on Axial Suspension Plasma Spray Process, Surf. Coat. Technol., 2018, 356, p 96-107

    Article  CAS  Google Scholar 

  17. J. Akedo and M. Lebedev, Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb (Zr52/Ti48)O3) Thick Films Deposited by Aerosol Deposition Method, Jpn. J. Appl. Phys. Part 1, 1999, 38(9B), p 5397-5401

    Article  CAS  Google Scholar 

  18. J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, J. Am. Ceram. Soc., 2006, 89(6), p 1834-1839

    Article  CAS  Google Scholar 

  19. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17(2), p 181-198

    Article  CAS  Google Scholar 

  20. M. Mori, T. Ustunomiya, S. Miyake, J. Akedo, Characteristics of PZT films fabricated by inductively coupled plasma-assisted aerosol deposition method, in 2007 Sixteenth IEEE Int. Symp. Appl. Ferroelectrics, May 2007 (Nara, Japan), p. 454–456

  21. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.C. Lau, C.J. Li, L. Li, J. Longtin, N. Markocsan, P.-J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, P. Vuoristo, The Thermal Spray Roadmap. J. Therm. Spray Technol., 2016, 25(8), p. 1376–1440 (J. Akedo and K. Shinoda, Section 2.2 Aerosol Deposition Method, p. 1379–1383)

  22. K. Shinoda, H. Noda, K. Ohtomi, T. Yamada, and J. Akedo, Promotion of Knowledge and Technology Transfer Towards Innovative Manufacturing Process: Case Study of New Hybrid Coating Process, Int. J. Automat. Technol., 2019, 13(3), p 419-431

    Article  Google Scholar 

  23. T. Saeki, K. Shinoda, M. Mori, J. Akedo, Dense Crack-Free Alpha-Alumina Coatings with Three-Dimensional Coverage Capability by Fine Solid Powder Spraying with the Assistance of Mesoplasma (to be submitted)

  24. M. Shahien, M. Suzuki, K. Shinoda J. Akedo, Direct spraying of fine ceramic particles in thermal spray, in Proceedings Thermal Spray Conference 2018 (ASM International), p. 515–520

  25. M. Suzuki, M. Shahien, K. Shinoda and J. Akedo, State-of-the-art ceramic coating processes via fine particle spraying, in Proceedings of International Gas Turbine Congress 2019, Tokyo, IGTC-2019-179

  26. M. Vardelle, A. Vardelle, and P. Fauchais, Spray parameter and particle behavior relationships during plasma spraying, J. Therm. Spray Technol., 1993, 2(1), p 79-91

    Article  CAS  Google Scholar 

  27. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564-1583

    Article  CAS  Google Scholar 

  28. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3-20

    Article  CAS  Google Scholar 

  29. K. Remesh, H.W. Ng, and S.C.M. Yu, Influence of Process Parameters on the Deposition Footprint in Plasma-Spray Coating, J. Therm. Spray Technol., 2003, 12(3), p 377-392

    Article  Google Scholar 

  30. M. Shahien, M. Yamada, T. Yasui, and M. Fukumoto, Reactive Atmospheric Plasma Spraying of AlN Coatings: Influence of Aluminum Feedstock Particle Size, J. Therm. Spray Technol., 2011, 20(3), p 580-589

    Article  CAS  Google Scholar 

  31. M. Boulos, P. Fauchais, and E. Pfender, Thermal plasmas, fundamentals and applications, Plenum Press, London, 1994

    Google Scholar 

  32. J.O. Berghaus, S. Bouaricha, J.-G. Legoux, C. Moreau, and T. Chraska, Suspension plasma spraying of nano-ceramics using an axial injection torch, in Proceedings of Int’l Thermal Spray Conference, C. Berndt and E. Lugsheider, Eds., May 2–4 (ASM International, Basel, Switzerland, 2005)

Download references

Acknowledgments

This work was conducted under “High-value Added Ceramic Products Manufacturing Technologies Project” supported by Innovative Design/Manufacturing Technologies (a part of Cross-Ministerial Strategic Innovation Promotion (SIP) Program managed by NEDO, Council for Science, Technology, and Innovation (CSTI)), and Japan Society for the Promotion of Science (JSPS) KAKENHI Grants-in-Aid (Grant number 14F03917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Shahien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahien, M., Suzuki, M., Shinoda, K. et al. Ceramic Coatings Deposited from Fine Particles by Different Spraying Processes. J Therm Spray Tech 29, 2033–2047 (2020). https://doi.org/10.1007/s11666-020-01095-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01095-6

Keywords

Navigation