Skip to main content

Advertisement

Log in

Feasibility Study of an Adaptive-Pressure Plasma Coating Process—Part 1: Model Description

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal barrier coatings for gas turbine engines are mainly produced by electron beam physical vapor deposition or atmospheric plasma spray depending on the thermomechanical loading of engine components. This study deals with the numerical design of a two-step thermal plasma-aided physical vapor deposition process capable of efficiently evaporating the coating material processed in the plasma jet and of producing a strain-tolerant coating microstructure from vapor phase condensation. The system involved a high-pressure chamber and a low-pressure chamber connected by an expansion nozzle. The objective was to achieve the highest deposition efficiency for a given plasma specific enthalpy. The numerical simulations based on computational fluid dynamics and direct simulation Monte Carlo models projected the effect of the process geometry and operating conditions on the gas flow fields, powder vaporization efficiency and nucleation/growth phenomena in the gas phase. For a targeted powder feed rate, they allowed to determine the length of the high-pressure chamber, the diameter of the expansion nozzle and other dimensions of the deposition system. The expansion nozzle that linked the two chambers was the crucial component of the process, and the predictions made it possible to select the geometry and process operating parameters that avoided its clogging and/or melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.F. Smith, A.C. Hall, J.D. Fleetwood, and P. Meyer, Very Low Pressure Plasma Spray—A Review of an Emerging Technology in the Thermal Spray Community, Coatings, 2011, 1(2), p 117-132

    Article  CAS  Google Scholar 

  2. E. Muehlberger, Method of forming uniform thin coatings on large substrates, US, US5853815A, 1998

  3. G. Mauer, A. Hospach, and R. Vaßen, Process Development and Coating Characteristics of Plasma Spray-PVD, Surf. Coat. Technol., 2013, 220, p 219-224

    Article  CAS  Google Scholar 

  4. K. von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVDTM, J. Therm. Spray Technol., 2009, 19(1–2), p 502-509

    Google Scholar 

  5. K. von Niessen and M. Gindrat, Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Therm. Spray Technol., 2011, 20(4), p 736-743

    Article  Google Scholar 

  6. B.J. Harder, D. Zhu, M.P. Schmitt, and D.E. Wolfe, Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2017, 26(6), p 1052-1061

    Article  CAS  Google Scholar 

  7. E. Bakan and R. Vaßen, Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties, J. Therm. Spray Technol., 2017, 26(6), p 992-1010

    Article  CAS  Google Scholar 

  8. A. Anwaar, L. Wei, Q. Guo, B. Zhang, and H. Guo, Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings, J. Therm. Spray. Technol., 2017, 26(8), p 1810-1822

    Article  CAS  Google Scholar 

  9. W. He, G. Mauer, M. Gindrat, R. Wäger, and R. Vaßen, Investigations on the Nature of Ceramic Deposits in Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2016, 26(1–2), p 83-92

    Google Scholar 

  10. G. Mauer, Plasma Characteristics and Plasma-Feedstock Interaction Under PS-PVD Process Conditions, Plasma Chem. Plasma Process., 2014, 34(5), p 1171-1186

    Article  CAS  Google Scholar 

  11. Q.-Y. Chen, X.-Z. Peng, G.-J. Yang, C.-X. Li, and C.-J. Li, Characterization of Plasma Jet in Plasma Spray-Physical Vapor Deposition of YSZ Using a < 80 kW Shrouded Torch Based on Optical Emission Spectroscopy, J. Therm. Spray. Technol., 2015, 24(6), p 1038-1045

    Article  CAS  Google Scholar 

  12. V.A. Nemchinsky and M. Shigeta, Simple Equations to Describe Aerosol Growth, Modell. Simul. Mater. Sci. Eng., 2012, 20(4), p 045017

    Article  Google Scholar 

  13. M.A. Gallis, J.R. Torczynski, S.J. Plimpton, D.J. Rader, and T. Koehle, Direct Simulation Monte Carlo: The Quest for Speed, Proceedings of the 29th Rarefied Gas Dynamics (RGD) Symposium, J. Fan, Ed., July 13–18, 2014 (Xi’an, China), AIP Publishing, 2014, p 27-36

  14. SPARTA Direct Simulation Monte Carlo Simulator, https://sparta.sandia.gov. Accessed 7 Jul 2018

  15. P.C. Huang, J. Hebeylein, and E. Pfender, A two-fluid model of turbulence for a thermal plasma jet, Plasma Chem. Plasma Process., 1995, 15(1), p 25-46

    Article  CAS  Google Scholar 

  16. K. Bobzin, M. Öte, M. A. Knoch, I. Alkhasli, U. Reisgen, O. Mokrov, and O. Lisnyi, Simulation of the Particle Melting Degree in Air Plasma Spraying, J. Phys.: Conf. Ser., 2017, 825, p 012002

    Google Scholar 

  17. M. De Sousa, “Contribution to solar-grade oxidized silicon waste purification using a thermal plasma based process,” Ph.D. Thesis, Université de Limoges, 2014 (in French)

  18. B. Vautherin, M.-P. Planche, R. Bolot, A. Quet, L. Bianchi, and G. Montavon, Vapors and Droplets Mixture Deposition od Metallic Coatings by Very Low Pressure Plasma Spraying, J. Therm. Spray Technol., 2014, 23(4), p 596-608

    Article  CAS  Google Scholar 

  19. B. Jodoin, M. Gindrat, J.-L. Dorier, C. Hollenstein, M. Loch, and G. Barbezat, Modelling and Diagnostics of a Supersonic DC Plasma Jet Expanding at Low Pressure, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4-6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002, p 716–720

  20. M.-J. Liu, K.-J. Zhang, Q. Zhang, M. Zhang, G.-J. Yang, C.-X. Li, and C.-J. Li, Thermodynamic conditions for cluster formation in supersaturated boundary layer during plasma spray-physical vapor deposition, Appl. Surf. Sci., 2019, 441, p 950-959

    Article  Google Scholar 

  21. S. Chapman, T.G. Cowling, and D. Burnett, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge University Press, 1990

  22. K. Sinha, K. Mahesh, and G.V. Candler, Modeling shock unsteadiness in shock/turbulence interaction, Phys. Fluids, 2003, 15(8), p 2290-2297

    Article  CAS  Google Scholar 

  23. S.E. Selezneva, M.I. Boulos, M.C.M. van de Sanden, R. Engeln, and D.C. Schram, Stationary supersonic plasma expansion: continuum fluid mechanics versus direct simulation Monte Carlo method, J. Phys. D: Appl. Phys., 2002, 35(12), p 1362-1372

    Article  CAS  Google Scholar 

  24. T.M. Rodgers, H. Zhao, and H.N.G. Wadley, Vapor deposition on doublet airfoil substrates: Coating thickness control, J. Vac. Sci. Technol., A, 2015, 33(6), p 061509

    Article  Google Scholar 

  25. D. Ivchenko, T. Zhang, G. Mariaux, A. Vardelle, S. Goutier, and T.E. Itina, On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions, J. Therm. Spray Technol., 2017, 27(1–2), p 3-13

    Google Scholar 

  26. D. Ivchenko, “Modeling and design of a physical vapor deposition process assisted by thermal plasma (PS-PVD),” Ph.D. Thesis, Université de Limoges, 2018

  27. P. André, M. Abbaoui, A. Augeard, P. Desprez, and T. Singo, Study of Condensed Phases, of Vaporization Temperatures of Aluminum Oxide and Aluminum, of Sublimation Temperature of Aluminum Nitride and Composition in an Air Aluminum Plasma, Plasma Chem. Plasma Process., 2016, 36(4), p 1161-1175

    Article  Google Scholar 

  28. G. Mauer, D. Ivchenko, G. Mariaux, A. Vardelle, S. Goutier, T. Itina, C. Zhao, and R. Vassen, “Plasma spraying at very low pressure (VLPPS): Model development and experimental validation beyond continuum conditions,” presented at the 15th International High-Tech Plasma Processes Conference (HTPP15), Toulouse, 2018

  29. G. Mariaux, E. Legros, and A. Vardelle, Modeling of coating formation and heat flux to substrate by particles and plasma jet in plasma spraying, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5-8, 2003 (Orlando, FL), ASM International, 2003, p 895–904

  30. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals, Springer, US, 2014

    Book  Google Scholar 

  31. P. Fuzet, “Etude expérimentale de l’ablation de matériaux thermo-ablatifs sous impacts d’alumine liquide, modélisation et développement d’un moyen d’essai,” Ph.D. Thesis, Université de Limoges, 2014 (in French)

  32. X. Chen and E. Pfender, Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma, Plasma Chem. Plasma Process., 1983, 3(1), p 97-113

    Article  CAS  Google Scholar 

  33. X. Chen and E. Pfender, Behavior of small particles in a thermal plasma flow, Plasma Chem. Plasma Process., 1983, 3(3), p 351-366

    Article  CAS  Google Scholar 

  34. S.L. Girshick and C.-P. Chiu, Kinetic nucleation theory: A new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor, J. Chem. Phys., 1990, 93(2), p 1273-1277

    Article  CAS  Google Scholar 

  35. G. Mauer and R. Vaßen, Conditions for nucleation and growth in the substrate boundary layer at plasma spray-physical vapor deposition (PS-PVD), Surf. Coat. Technol., 2018, 371, p 417-427

    Article  Google Scholar 

  36. G.V. Samsonov and G.V. Samsonov, The Oxide Handbook, Springer, US, 1973

    Book  Google Scholar 

  37. A. Stoklosa, Molar Volume, Ionic Radii in Stoichiometric and Nonstoichiometric Metal Oxides, Stoichiometry and Materials Science - When Numbers Matter, A. Innocenti, Ed., IntechOpen Ltd., 2012, p 219–244

  38. M. Rösner-Kuhn, W.H. Hofmeister, G. Kuppermann, R.J. Bayuzick, and M.G. Frohberg, Investigations of the influence of oxygen on the surface tension of zirconium by the oscillating drop technique, Surf. Sci., 1999, 443(3), p 159-164

    Article  Google Scholar 

  39. S.K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed., Oxford University Press, 2000

  40. J. Welty, C.E. Wicks, G.L. Rorrer, and R.E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer, 5th ed., Wiley, 2007

  41. R.L. Williamson, J.R. Fincke, and C.H. Chang, A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying, Plasma Chem. Plasma Process., 2000, 20(3), p 299-324

    Article  CAS  Google Scholar 

  42. G. Mauer, A. Hospach, N. Zotov, and R. Vaßen, Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying, J. Therm. Spray Technol., 2012, 22(2-3), p 83-89

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Région Limousin (later merged into the Région Nouvelle-Aquitaine) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Mariaux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2019 International Thermal Spray Conference, held on May 26–29, 2019, in Yokohama, Japan, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivchenko, D., Mariaux, G., Vardelle, A. et al. Feasibility Study of an Adaptive-Pressure Plasma Coating Process—Part 1: Model Description. J Therm Spray Tech 29, 25–37 (2020). https://doi.org/10.1007/s11666-019-00948-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00948-z

Keywords

Navigation