Skip to main content
Log in

Effect of Feedstock Powder Morphology on Cold-Sprayed Titanium Dioxide Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The properties of cold-sprayed ceramic coatings depend not only on the process parameters but also on the feedstock powder characteristics. To clarify the effect of feedstock powder on cold spraying, two titanium oxide powders were used in this study: (1) nanopowder and (2) agglomerated powder prepared with nanoparticles and polyvinyl alcohol. The cross sections of the deposited coatings were observed by scanning electron microscopy (SEM). The results showed that the agglomerated powder with micrometer particles made of nano-sized particles passes successfully through the bow shock layer and reached the substrate, thus forming a coating. These particles are embedded into the substrate and form a strong interfacial coating/substrate bond. SEM images revealed that the metallic substrate undergoes plastic deformation, providing interlocking with the particles of the powder, and hence, reasonable bonding to the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Gärtner, T. Stoltenhoff, T. Schmidt, and H. Kreye, The Cold Spray Process and Its Potential for Industrial Applications, J. Therm. Spray Technol., 2006, 15(2), p 223-232

    Article  Google Scholar 

  2. N. Bala, H. Singh, J. Karthikeyan, and S. Prakash, Cold Spray Coating Process for Corrosion Protection: A Review, Surf. Eng., 2014, 30(6), p 414-421

    Article  CAS  Google Scholar 

  3. S. Grigoriev, A. Okunkova, A. Sova, P. Bertrand, and I. Smurov, Cold Spraying: From Process Fundamentals Towards Advanced Applications, Surf. Coat. Technol., 2015, 268, p 77-84

    Article  CAS  Google Scholar 

  4. R. Ghelichi, D. MacDonald, S. Bagherifard, H. Jahed, M. Guagliano, and B. Jodoin, Microstructure and Fatigue Behavior of Cold Spray Coated Al5052, Acta Mater., 2012, 60(19), p 6555-6561

    Article  CAS  Google Scholar 

  5. V.K. Champagne and D. Helfritch, Critical Assessment 11: Structural Repairs by Cold Spray, J. Mater. Sci. Technol., 2015, 31(6), p 627-634

    Article  CAS  Google Scholar 

  6. A. List, F. Gärtner, T. Mori, M. Schulze, H. Assadi, and S. Kuroda, Cold Spraying of Amorphous Cu50Zr50 Alloys, J. Therm. Spray Technol., 2015, 24(1–21), p 108-118

    CAS  Google Scholar 

  7. J. Henao, A. Concustell, I.G. Cano, N. Cinca, S. Dosta, and J.M. Guilemany, Influence of Cold Gas Spray Process Conditions on the Microstructure of Fe-Based Amorphous Coatings, J. Alloys Compd., 2015, 622, p 995-999

    Article  CAS  Google Scholar 

  8. S. Dosta, G. Bolelli, A. Candeli, L. Lusvarghi, I.G. Cano, and J.M. Guilemany, Plastic Deformation Phenomena During Cold Spray Impact of WC-Co Particles Onto Metal Substrates, Acta Mater., 2017, 124, p 173-181

    Article  CAS  Google Scholar 

  9. S.A. Alidokht, P. Vo, S. Yue, and R.R. Chromik, Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings, J. Therm. Spray. Technol., 2017, 26(8), p 1908-1921

    Article  CAS  Google Scholar 

  10. J. Freitag and D.W. Bahnemann, Evaluation of the Photocatalytic (Visible-Light) Activity of Cold Gas Sprayed TiO2 Layers on Metal Sheets, Phys. Status Solidi, 2014, 8(6), p 596-599

    CAS  Google Scholar 

  11. W. Wong, E. Irissou, A.N. Ryabinin, J.G. Legoux, and S. Yue, Influence of Helium and Nitrogen Gases on the Properties of Cold Gas Dynamic Sprayed Pure Titanium Coatings, J. Therm. Spray Technol., 2011, 20(1–2), p 213-226

    Article  CAS  Google Scholar 

  12. K.H. Ko, J.O. Choi, and H. Lee, Characteristics of Cold Sprayed Dendritic Cu Coatings, Surf. Eng., 2016, 32(9), p 650-654

    Article  CAS  Google Scholar 

  13. G. Huang, H. Wang, X. Li, L. Xing, and J. Zhou, Deposition Efficiency of Low Pressure Cold Sprayed Aluminum Coating, Mater. Manuf. Process., 2018, 23(10), p 1100-1106

    Article  Google Scholar 

  14. M. Diab, X. Pang, and H. Jahed, The Effect of Pure Aluminum Cold Spray Coating on Corrosion and Corrosion Fatigue of Magnesium (3% Al-1% Zn) Extrusion, Surf. Coat. Technol., 2017, 309, p 423-435

    Article  CAS  Google Scholar 

  15. R. Drehmann, T. Grund, T. Lampke, B. Wielage, C. Wustefeld, M. Motylenko, and D. Rafaja, Essential Factors Influencing the Bonding Strength of Cold Sprayed Aluminum Coatings on Ceramic Substrates, J. Therm. Spray Technol., 2018, 27(3), p 446-455

    Article  CAS  Google Scholar 

  16. A. Ganesan, M. Yamada, and M. Fukumoto, Cold Spray Coating Deposition Mechanism on the Thermoplastic and Thermosetting Polymer Substrates, J. Therm. Spray Technol., 2013, 22(8), p 1275-1282

    Article  CAS  Google Scholar 

  17. S.B. Dayani, S.K. Shaha, R. Ghelichi, J.F. Wang, and H. Jahed, The Impact of AA7075 Cold Spray Coating on the Fatigue Life of AZ31B Cast Alloy, Surf. Coat. Technol., 2018, 337, p 150-158

    Article  CAS  Google Scholar 

  18. G. Shayegan, H. Mahmoudi, R. Ghelichi, J. Villafuerte, J. Wang, M. Guagliano, and H. Jahed, Residual Stress Induced by Cold Spray Coating of Magnesium AZ31B Extrusion, Mater. Des., 2014, 60, p 72-84

    Article  CAS  Google Scholar 

  19. W. Li, H. Assadi, F. Gaertner, and S. Yin, A Review of Advanced Composite and Nanostructured Coatings by Solid-State Cold Spraying Process. Crit. Rev. Solid State Mater. Sci. (2018). https://doi.org/10.1080/10408436.2017.1410778

    Article  Google Scholar 

  20. S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li, and C. Coddet, Deposition Behavior of Thermally Softened Copper Particles in Cold Spraying, Acta Mater., 2013, 61(14), p 5105-5118

    Article  CAS  Google Scholar 

  21. M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, and C.A. Schuh, Adiabatic Shear Instability is Not Necessary for Adhesion in Cold Spray, Acta Mater., 2018, 158, p 430-439

    Article  CAS  Google Scholar 

  22. H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying—A Materials Perspective, Acta Mater., 2016, 116, p 382-407

    Article  CAS  Google Scholar 

  23. H.J. Kim, C.H. Lee, and S.Y. Hwang, Superhard Nano WC-12%Co Coating by Cold Spray Deposition, Mater. Sci. Eng. A, 2005, 391, p 243-248

    Article  Google Scholar 

  24. K. Kim, M. Watanabe, and S. Kuroda, Bonding Mechanisms of Thermally Softened Metallic Powder Particles and Substrates Impacted at High Velocity, Surf. Coat. Technol., 2010, 204(14), p 2175-2180

    Article  CAS  Google Scholar 

  25. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 36(6), p 369-395

    Article  Google Scholar 

  26. R. Ballhorn, F. Peterka, H. Kreye, I. Burlacov, T. Stoltenhoff, and J. Jirkovsky, Production of Photocatalytically Active Polymer Surfaces of Variable Composition Comprises Cold Gas Spraying them with Oxide Powder to Produce Adherent Photocatalytic Layer, German Patent Number: DE102004038795A1 (2004)

  27. T. Klassen and J.A. Kliemann, Method for Manufacturing a Photocatalytically Active Layer, United States Patent US2007148363A1 (2007)

  28. G.J. Yang, C.J. Li, F. Han, W.Y. Li, and A. Ohmori, Low Temperature Deposition and Characterization of TiO2 Photocatalytic Film Through Cold Spray, Appl. Surf. Sci., 2008, 254, p 3979-3982

    Article  CAS  Google Scholar 

  29. J.O. Kliemann, H. Gutzmann, F. Gärtner, H. Hübner, C. Borchers, and T. Klassen, Formation of Cold-Sprayed Ceramic Titanium Dioxide Layers on Metal Surfaces, J. Therm. Spray Technol., 2011, 20(1–2), p 292-298

    Article  CAS  Google Scholar 

  30. M. Yamada, H. Isago, H. Nakano, and M. Fukumoto, Cold Spraying of TiO2 Photocatalyst Coating With Nitrogen Process Gas, J. Therm. Spray Technol., 2010, 19(6), p 1218-1223

    Article  CAS  Google Scholar 

  31. M. Mozaffari, J. Amighian, and E. Darsheshdar, Magnetic and Structural Studies of Nickel-Substituted Cobalt Ferrite Nanoparticles, Synthesized by the Sol–Gel Method, J. Magn. Magn. Mater., 2014, 350, p 19-22

    Article  CAS  Google Scholar 

  32. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176

    Article  CAS  Google Scholar 

  33. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, M.F. Smith, and T.J. Roemer, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 1999, 8(4), p 576-582

    Article  CAS  Google Scholar 

  34. D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol., 2015, 6(3), p 147-182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdollah-zadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajipour, H., Abdollah-zadeh, A., Assadi, H. et al. Effect of Feedstock Powder Morphology on Cold-Sprayed Titanium Dioxide Coatings. J Therm Spray Tech 27, 1542–1550 (2018). https://doi.org/10.1007/s11666-018-0782-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0782-3

Keywords

Navigation