Skip to main content
Log in

Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (− 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Materials Science—Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  2. N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15(8), p 804-809

    Article  Google Scholar 

  3. R. Hui, J.O. Berghaus, C. Deces-Petit, W. Qu, S. Yick, J.G. Legoux, and C. Moreau, High Performance Metal-supported Solid Oxide Fuel Cells Fabricated by Thermal Spray, J. Power Sources, 2009, 191(2), p 371-376

    Article  Google Scholar 

  4. R. Vassen, D. Hathiramani, J. Mertens, V.A.C. Haanappel, and I.C. Vinke, Manufacturing of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS), Surf. Coat Technol., 2007, 202(3), p 499-508

    Article  Google Scholar 

  5. G. Bolelli, V. Cannillo, L. Lusvarghi, and T. Manfredini, Wear behaviour of thermally sprayed ceramic oxide coatings, Wear, 2006, 261(11–12), p 1298-1315

    Article  Google Scholar 

  6. S. Wilson, Thermally Sprayed Abradable Coating Technology for Sealing in Gas Turbines, in 6th International Conference on the Future of Gas Turbine Technology, 2012

  7. E. Irissou, A. Dadouche, and R.S. Lima, Tribological Characterization of Plasma-Sprayed CoNiCrAlY-BN Abradable Coatings, J Therm. Spray Technol., 2014, 23(1–2), p 252-261

    Article  Google Scholar 

  8. D. Sporer, M. Dorfman, L. Xie, A. Refke, I. Giovannetti, and M. Giannozzi, Processing and Properties of Advanced Ceramic Abradable Coatings, Therm. Spray 2007 Global Coat. Solut., 2007, 2007, p 14-16

    Google Scholar 

  9. A. Ohmori and C.J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201(2), p 241-252

    Article  Google Scholar 

  10. S. Rangarajan and A.H. King, Non-destructive Evaluation of Delamination in Ceramic Thin Films on Metal Substrates by Scanning Electron Microscopy, Thin Solid Films, 2001, 385(1–2), p 22-28

    Article  Google Scholar 

  11. T. Chraska and A.H. King, Effect of Different Substrate Conditions upon Interface with Plasma Sprayed Zirconia—A TEM Study, Surf. Coat Technol., 2002, 157(2–3), p 238-246

    Article  Google Scholar 

  12. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part I. First Splat Solidification, Thin Solid Films, 2001, 397(1–2), p 30-39

    Article  Google Scholar 

  13. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part II. Interfaces and Subsequent Splat Solidification, Thin Solid Films, 2001, 397(1–2), p 40-48

    Article  Google Scholar 

  14. A.G. Evans, M. Ruhle, B.J. Dalgleish, and P.G. Charalambides, The Fracture Energy of Bimaterial Interfaces, Metall. Trans. A, 1990, 21(9), p 2419-2429

    Article  Google Scholar 

  15. C.J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J Therm. Spray Technol., 2002, 11(3), p 365-374

    Article  Google Scholar 

  16. C.J. Li, G.J. Yang, and C.X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2013, 22(2–3), p 192-206

    Article  Google Scholar 

  17. L. Chen, G.J. Yang, and C.X. Li, Formation of Lamellar Pores for Splats via Interfacial or Sub-interfacial Delamination at Chemically Bonded Region, J. Therm. Spray Technol., 2017, 26, p 315-326

    Article  Google Scholar 

  18. V.V. Sobolev, J.M. Guilemany, J. Nutting, and J.R. Miquel, Development of Substrate-coating Adhesion in Thermal Spraying, Int. Mater. Rev., 1997, 42(3), p 117-136

    Article  Google Scholar 

  19. C.J. Li and J.L. Li, Transient Contact Pressure During Flattening of Thermal Spray Droplet and its Effect on Splat Formation, J. Therm. Spray Technol., 2004, 13(2), p 229-238

    Article  Google Scholar 

  20. X.Y. Jiang, Y.P. Wan, H. Herman, and S. Sampath, Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets During Thermal Spray, Thin Solid Films, 2001, 385(1–2), p 132-141

    Article  Google Scholar 

  21. M.X. Xue, S. Chandra, and J. Mostaghimi, Investigation of Splat Curling up in Thermal Spray Coatings, J. Therm. Spray Technol., 2006, 15(4), p 531-536

    Article  Google Scholar 

  22. L. Chen, G.-J. Yang, C.-X. Li, and C.-J. Li, Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats, J. Therm. Spray Technol., 2017, 26, p 302-314

    Article  Google Scholar 

  23. L. Chen, G.J. Yang, C.X. Li, and C.J. Li, Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings, J. Therm. Spray Technol., 2016, 25(5), p 959-970

    Article  Google Scholar 

  24. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd edn, Chapter 3. Oxford University Press, Oxford, 2001

  25. L.B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation, and Surface Evolution, Cambridge University Press, Cambridge, 2003

    Google Scholar 

  26. J. Robertson and M.I. Manning, Limits to Adherence of Oxide Scales, Mater. Sci. Technol., 1990, 6(1), p 81-92

    Article  Google Scholar 

  27. V.B. Shenoy, A.F. Schwartzman, and L.B. Freund, Crack Patterns in Brittle Thin Films, Int. J. Fract., 2001, 109(1), p 29-45

    Article  Google Scholar 

  28. M.D. Thouless, Crack Spacing in Brittle Films on Elastic Substrates, J. Am. Ceram. Soc., 1990, 73(7), p 2144-2146

    Article  Google Scholar 

  29. M.D. Thouless, E. Olsson, and A. Gupta, Cracking of Brittle Films on Elastic Substrates, Acta Metall. Mater., 1992, 40(6), p 1287-1292

    Article  Google Scholar 

  30. X. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen, and D. Stöver, Lanthanum-Cerium Oxide as a Thermal Barrier-Coating Material for High-temperature Applications, Adv. Mater., 2003, 15(17), p 1438-1442

    Article  Google Scholar 

  31. W. Ma, S. Gong, H. Li, and H. Xu, Novel Thermal Barrier Coatings Based on La2Ce2O7/8YSZ Double-Ceramic-Layer Systems Deposited by Electron Beam Physical Vapor Deposition, Surf. Coat Technol., 2008, 202(12), p 2704-2708

    Article  Google Scholar 

  32. S. Kaiser, H. Preis, W. Gebhardt, O. Ambacher, H. Angerer, M. Stutzmann, A. Rosenauer, and D. Gerthsen, Quantitative Transmission Electron Microscopy Investigation of the Relaxation by Misfit Dislocations Confined at the Interface of GaN/Al2O3 (0001), Jpn. J. Appl. Phys., 1998, 37(1), p 84-89

    Article  Google Scholar 

  33. A.F. Schwartzman and R. Sinclair, Metastable and Equilibrium Defect Structure of II–VI/GaAs Interfaces, J. Electron. Mater., 1991, 20(7), p 805-814

    Article  Google Scholar 

  34. J.H. Joo, K.J. Greenberg, M. Baram, D.R. Clarke, and E.L. Hu, Aqueous Epitaxial Growth of ZnO on Single Crystalline Au Microplates, Cryst. Growth Des., 2013, 13(3), p 986-991

    Article  Google Scholar 

  35. M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., 1995, 4(1), p 50-58

    Article  Google Scholar 

  36. H. Jones, Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization, J. Phys. D Appl. Phys., 1971, 4(11), p 1657-1660

    Article  Google Scholar 

  37. R. Mcpherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat Technol., 1989, 39(1–3), p 173-181

    Article  Google Scholar 

  38. C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, J.C. Krapez, and M. Vardelle, Temperature Evolution of Plasma-Sprayed Niobium Particles Impacting on a Substrate, Surf. Coat Technol., 1991, 46(2), p 173-187

    Article  Google Scholar 

  39. T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th ed., Wiley, New York, 2012

    Google Scholar 

  40. Q.M. Tan, Dimensional Analysis. With Case Studies in Mechanics, Springer, Berlin, Heidelberg, 2011

    Google Scholar 

  41. M.W. Chase, NIST-JANAF thermochemical tables. J. Phys. Chem. Reference Data, 1998, 9

  42. L. Chen and G.-J. Yang, Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats, J Therm Spray Techn, 2017, 26(5566), p 1168-1182

    Article  Google Scholar 

  43. J.W. Hutchinson and Z. Suo, Mixed-Mode Cracking in Layered Materials, Adv. Appl. Mech., 1992, 29, p 63-191

    Article  Google Scholar 

  44. J.W. Hutchinson, Stresses and Failure Modes in Thin Films and Multilayers, in Lecture Notes, 1996

  45. A. Bagchi and A.G. Evans, The Mechanics and Physics of Thin Film Decohesion and its Measurement, Interface Sci., 1996, 3(3), p 169-193

    Article  Google Scholar 

  46. A.G. Evans and J.W. Hutchinson, The Thermomechanical Integrity of Thin Films and Multilayers, Acta Metall. Mater., 1995, 43(7), p 2507-2530

    Article  Google Scholar 

  47. Z. Suo and J.W. Hutchinson, Steady-State Cracking in Brittle Substrates Beneath Adherent Films, Int. J. Solids Struct., 1989, 25(11), p 1337-1353

    Article  Google Scholar 

Download references

Acknowledgments

The present project is supported by National Basic Research Program (Nos. 2013CB035701), the Fundamental Research Funds for the Central Universities, and the National Program for Support of Top-notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-jun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, Gj. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats. J Therm Spray Tech 27, 255–268 (2018). https://doi.org/10.1007/s11666-018-0692-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0692-4

Keywords

Navigation