Skip to main content
Log in

A TEM Study of the Microstructure of Plasma-Sprayed YSZ Near Inter-splat Interfaces

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The splat interface bonding state which changes heat transfer conditions and thus the cooling rate during splat cooling may influence the interface microstructure. In this paper, YSZ coating was deposited by atmospheric plasma spraying with substrate cooling during deposition. Subsequent characterization was implemented using high resolution transmission electron microscopy to examine the local microstructures near the interfaces at the bonded and unbonded zones. Selected area diffraction analyses of the splats across both the bonded interface and unbonded interface revealed that all bulk splats present a metastable tetragonal structure. Results showed that the size of columnar grains within a splat was significantly influenced by the interface bonding. At the unbonded region in the splat, large columnar grains form which can be attributed to poor thermal contact of melt to the underlying splat surface before its solidification. At the bonded zones, the splat presents a much fine columnar grain structure, which is attributed to good thermal contact of the melt to the underlying splat before solidification. Moreover, it is evident that the bonded interface region presents a distinct microstructure feature from the fine columnar grains suggesting the crystal defect of high density of dislocations at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  Google Scholar 

  2. C.U. Hardwickre and Y.-C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Thermal Spray Technol., 2013, 22, p 564-576

    Article  Google Scholar 

  3. N. Curry, N. Markocsan, L. Ostergren, X.H. Li, and M. Dorfman, Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems, J. Thermal Spray Technol., 2013, 22, p 864-872

    Article  Google Scholar 

  4. N.R. Shankar, H. Herman, S.P. Singhal, and C.C. Berndt, Neutron and X-ray Diffraction of Plasma-Sprayed Zirconia-Yttria Thermal Barrier Coatings, Thin Solid Films, 1984, 119, p 159-171

    Article  Google Scholar 

  5. C.-J. Li, C.-X. Li, Y.-Z. Xing, M. Gao, and G.-J. Yang, Effect of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC, Solid State Ionics, 2006, 177, p 2065-2069

    Article  Google Scholar 

  6. D. Soysal, J. Arnold, P. Szabo, R. Henne, and S.A. Ansar, Thermal Plasma Spraying Applied on Solid Oxide Fuel Cells, J. Thermal Spray Technol., 2013, 22, p 588-598

    Article  Google Scholar 

  7. C.-J. Li and A. Ohmori, Relationship Between the Structure and Properties of Thermally Sprayed Deposits, J. Thermal Spray Technol., 2002, 11, p 365-374

    Article  Google Scholar 

  8. J.R. Brandon and R. Taylor, Phase Stability of Zirconia-Based Thermal Barrier Coatings Part I. Zirconia-Yttria Alloys, Surf. Coat. Technol., 1991, 46, p 75-90

    Article  Google Scholar 

  9. H.C. Chen, J. Heberlein, and E. Pfender, Dielectric Filters Made of PS: Advanced Performance by Oxidation and New Layer Structures, Thin Solid Films, 1997, 301, p 237-240

    Article  Google Scholar 

  10. M. Levit, S. Berger, I. Grimberg, and B.Z. Weiss, Combustion Synthesis of Ceramic and Metal-Matrix Composites, J. Mater. Synth. Process., 1994, 2, p 71-86

    Google Scholar 

  11. P. Bengtsson and T. Johannesson, Characterization of Microstructural Defects in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 1995, 4, p 245-251

    Article  Google Scholar 

  12. R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112, p 89-95

    Article  Google Scholar 

  13. X.-J. Ning, C.-X. Li, C.-J. Li, and G.-J. Yang, Effect of Powder Structure on Microstructure and Electrical Properties of Plasma-Sprayed 4.5 mol% YSZ Coating, Vacuum, 2006, 80, p 1261-1265

    Article  Google Scholar 

  14. J. Wu, H.B. Guo, L. Wang, and S.K. Gong, Microstructure and Thermal Properties of Plasma Sprayed Thermal Barrier Coatings from Nanostructured YSZ, J. Thermal Spray Technol., 2010, 19, p 1186-1194

    Article  Google Scholar 

  15. R. Dhiman, A.G. McDonald, and S. Chandra, Predicting Splat Morphology in a Thermal Spray Process, Surf. Coat. Technol., 2007, 201, p 7789-7801

    Article  Google Scholar 

  16. H. Li, S. Costil, H.L. Liao, C.-J. Li, M. Planche, and C. Coddet, Effects of Surface Conditions on the Flattening Behavior of Plasma Sprayed Cu Splats, Surf. Coat. Technol., 2006, 200, p 5435-5446

    Article  Google Scholar 

  17. L. Li, A. Vaidya, S. Sampath, H. Xiong, and Z. Li, Particle Characterization and Splat Formation of Plasma Sprayed Zirconia, J. Therm. Spray. Technol., 2006, 15, p 97-105

    Article  Google Scholar 

  18. S. Sampath and X. Jiang, Splat Formation and Microstructure Development during Plasma Spraying: Deposition Temperature Effects, Mater. Sci. Eng. A, 2002, 304-306, p 144-150

    Article  Google Scholar 

  19. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray. Technol., 2004, 13, p 337-360

    Article  Google Scholar 

  20. S. Brossard, P.R. Munroe, A.T.T. Tran, and M.M. Hyland, Study of the Effects of Surface Chemistry on Splat Formation for Plasma Sprayed NiCr onto Stainless Steel Substrates, Surf. Coat. Technol., 2010, 204, p 1599-1607

    Article  Google Scholar 

  21. M. Qu and A. Gouldstone, On the Role of Bubbles in Metallic Splat Nanopores and Adhesion, J. Therm. Spray. Technol., 2008, 17, p 486-494

    Article  Google Scholar 

  22. S. Sampath, X.Y. Jiang, J. Matejicek, A.C. Leger, and A. Vardelle, Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272, p 181-188

    Article  Google Scholar 

  23. C.-J. Li and J.-L. Li, Evaporated-Gas-Induced Splashing Model for Splat Formation During Plasma Spraying, Surf. Coat. Technol., 2004, 184, p 13-23

    Article  Google Scholar 

  24. A. Ohmori and C.-J. Li, Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252

    Article  Google Scholar 

  25. A. Ohmori, C.-J. Li, and Y. Arata, Influence of Plasma Spray Conditions on the Structure of Al2O3 Coatings, Trans. Jpn. Weld. Res. Inst., 1990, 19, p 259-270

    Google Scholar 

  26. C.-J. Li and W.Z. Wang, Quantitative Characterization of Lamellar Microstructure of Plasma-Sprayed Ceramic Coatings Through Visualization of Void Distribution, Mater. Sci. Eng. A, 2004, 386, p 10-19

    Article  Google Scholar 

  27. C.-J. Li, G.-J. Yang, and C.-X. Li, Development of the Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2013, 22, p 192-206

    Article  Google Scholar 

  28. G.-J. Yang, C.-X. Li, S. Hao, Y.-Z. Xing, E.-J. Yang, and C.-J. Li, Critical Bonding Temperature for the Splat Bonding Formation During Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847

    Article  Google Scholar 

  29. Y.Z. Xing, C.-J. Li, Q. Zhang, C.-X. Li, and G.-J. Yang, Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits, J. Am. Ceram. Soc., 2008, 91, p 3931-3936

    Article  Google Scholar 

  30. S. Hao, C.-J. Li, and G.-J. Yang, Influence of Deposition Temperature on the Microstructures and Properties of Plasma-Sprayed Al2O3 Coatings, J. Therm. Spray Technol., 2011, 20, p 160-169

    Article  Google Scholar 

  31. E.-J. Yang, C.-J. Li, G.-J. Yang, C.-X. Li, and M. Takahashi, Effect of Intersplat Interface Bonding on the Microstructure of Plasma-Sprayed Al2O3 Coating, IOP Conf. Series Mater. Sci. Eng., 2014, 61, p 1-6

    Article  Google Scholar 

  32. V.G. Delgado-Arellano, M.I. Espitia-Cabrera, J. Reyes-Gasga, and M.E. Contreras-García, Structural Study of Zirconia Nanoclusters by High-Resolution Transmission Electron Microscopy, Mater. Charact., 2004, 52, p 179-186

    Article  Google Scholar 

  33. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part I: First Splat Solidification, Thin Solid Films, 2001, 397, p 30-39

    Article  Google Scholar 

  34. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part II: Interfaces and Subsequent Splat Solidification, Thin Solid Films, 2001, 397, p 40-48

    Article  Google Scholar 

  35. G.-J. Yang, C.-J. Li, C.-X. Li, A. Ohmori, and K. Kondoh, Improvement of Adhesion and Cohesion in Plasma Sprayed Ceramic Coatings by Heterogeneous Modification of Nonbonded Interface Through High Strength Adhesive Infiltration, J. Therm. Spray Technol., 2013, 22, p 36-47

    Article  Google Scholar 

  36. D.S. Suhr, T.E. Mitchell, and R.J. Keller, Science and Technology of Zirconia II, Advances in Ceramics, Vol 12, N. Claussen, M. Ruhle, and A.H. Heuer, Ed., American Ceramic Society, Columbus, OH, 1984, p 503

    Google Scholar 

  37. J. Moon, H. Choi, H. Kim, and C. Lee, The Effects of Heat Treatment on the Phase Transformation Behavior of Plasma-Sprayed Stabilized ZrO2 Coatings, Surf. Coat. Technol., 2002, 155, p 1-10

    Article  Google Scholar 

  38. M. Leoni, R.L. Jones, and P. Scardi, Phase Stability of Scandia-Yttria-Stabilized Zirconia TBCs, Surf. Coat. Technol., 1998, 108-109, p 107-113

    Article  Google Scholar 

  39. G.-J. Yang, Z.-L. Chen, C.-X. Li, and C.-J. Li, Microstructural and Mechanical Property Evolutions of Plasma-Sprayed YSZ Coating During High-Temperature Exposure: Comparison Study Between 8YSZ and 20YSZ, J. Thermal Spray Technol., 2013, 22, p 1294-1302

    Article  Google Scholar 

  40. Y.Y. Chen and W.C. Wei, J Processing and Characterization of Ultra-thin Yttria-Stabilized Zirconia (YSZ) Electrolytic Films for SOFC, Solid State Ionics, 2006, 177, p 351-357

    Article  Google Scholar 

  41. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200, p 49-66

    Article  Google Scholar 

  42. J.W. Hutchinson and Z. Suo, Mixed Mode Cracking in Layered Materials, Adv. Appl. Mech., 1992, 29, p 63-191

    Article  Google Scholar 

  43. E.-J. Yang, X.-T. Luo, G.-J. Yang, C.-J. Li, and M. Takahashi, Epitaxial Grain Growth During 8YSZ Splat Formation on Polycrystalline YSZ Substrates by Plasma Spraying, Surface & Coatings Technology, 2015, 274, p 37–43. doi:10.1016/j.surfcoat.2015.04.031

    Article  Google Scholar 

  44. Y. Shen, R.M. Leckie, C.G. Levi, and D.R. Clarke, Low Thermal Conductivity Without Oxygen Vacancies in Equimolar YO1.5 + TaO 2.5 and YbO 1.5 + TaO 2.5 Stabilized Tetragonal Zirconia Ceramics, Acta Mater., 2010, 58, p 4424-4431

    Article  Google Scholar 

  45. M. Zhao and W. Pan, Effect of Lattice Defects on Thermal Conductivity of Ti-Doped, Y2O3 -Stabilized ZrO2, Acta Mater., 2013, 61, p 5496-5503

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by National Basic Research Program (Grant No. 2012CB625100) and National Natural Science Foundation of China (Grant No. 51171144). The authors would like to thank the support of European program Marie Curie IPACTS (Project No: 268696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, EJ., Luo, XT., Yang, GJ. et al. A TEM Study of the Microstructure of Plasma-Sprayed YSZ Near Inter-splat Interfaces. J Therm Spray Tech 24, 907–914 (2015). https://doi.org/10.1007/s11666-015-0260-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0260-0

Keywords

Navigation