Skip to main content
Log in

Microstructure Effect of Intermediate Coat Layer on Corrosion Behavior of HVAF-Sprayed Bi-Layer Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The inherent pores and carbides of Cr3C2-NiCr coatings significantly reduce the corrosion resistance, the former by providing preferential paths for ion diffusion and the latter by forming cathodic sites in galvanic couples (between NiCr and Cr3C2). Adding a dense intermediate layer (intermediate coat layer) between the Cr3C2-NiCr coating (top coat) and substrate increases the corrosion protection of the coating if the layer acts as cathode in connection to the top coat. In the present work, NiCr, NiAl, and NiCoCrAlY layers were deposited by high-velocity air-fuel process as intermediate coat layers for the Cr3C2-NiCr top coat. Effects of coating microstructure on corrosion behavior of single- and bi-layer coatings were studied by open-circuit potential and polarization tests in 3.5 wt.% NaCl at room temperature. A zero resistance ammeter technique was used to study the galvanic corrosion of the coupled top and intermediate coat layers. Methods such as SEM and XRD were employed to characterize the as-sprayed and corroded coatings and to investigate the corrosion mechanisms. The results showed that the NiCoCrAlY coating not only presented a more positive corrosion potential (Ecorr) than the Cr3C2-NiCr coating, but also provided a better passive layer than the single-phase NiCr and NiAl coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Poirier, J.-G. Legoux, and R.S. Lima, Engineering HVOF-Sprayed Cr3C2-NiCr Coatings: The Effect of Particle Morphology and Spraying Parameters on the Microstructure, Properties, and High Temperature Wear Performance, J. Therm. Spray Technol., 2012, 22(2-3), p 280-289

    Article  Google Scholar 

  2. A. Özer and Y.K. Tür, Sintering Behaviour and Mechanical Properties of Cr3C2-NiCr Cermets, Bull. Mater. Sci., 2013, 36(5), p 907-911

    Article  Google Scholar 

  3. V.N. Shukla, R. Jayaganthan, and V.K. Tewari, Degradation Behaviour and Microstructural Characterisation of HVOF-Sprayed Cr3C2-NiCr Cermet Coatings in Molten Salt Environment, Int. J. Mater. Prod. Technol., 2016, 53(1), p 15-27

    Article  Google Scholar 

  4. M.G. Kovaleva, Y.N. Tyurin, V.M. Beresnev, M.S. Prozorova, M.Y. Arseenko, V.V. Sirota, and I.A. Pavlenko, Deposition and Characterization of Nanocomposition Cr3C2-TaC-NiCr Coating by Multi-Chamber Detonation Sprayer, Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, O. Fesenko and L. Yatsenko, Ed., Springer, New York, 2015, p 3-6

    Chapter  Google Scholar 

  5. D.K. Goyal, H. Singh, H. Kumar, and V. Sahni, Erosive Wear Study of HVOF Spray Cr3C2-NiCr Coated CA6NM Turbine Steel, J. Tribol., 2014, 136(4), p 602-622

    Article  Google Scholar 

  6. H. Singh and B.S. Sidhu, Erosion Characteristics of HVOF Developed Cr3C2-NiCr and WC-Co Coatings, Mater. Sci. Forum, 2013, 751, p 71-79

    Article  Google Scholar 

  7. J.A. Picas, A. Forn, A. Igartua, and G. Mendoza, Mechanical and Tribological Properties of High Velocity Oxy-Fuel Thermal Sprayed Nanocrystalline CrC NiCr Coatings, Surf. Coat. Technol., 2003, 174-175, p 1095-1100

    Article  Google Scholar 

  8. J.K.N. Murthy and B. Venkataraman, Abrasive Wear Behaviour of WC-CoCr and Cr3C2-20(NiCr) Deposited by HVOF and Detonation Spray Processes, Surf. Coat. Technol., 2006, 200(8), p 2642-2652

    Article  Google Scholar 

  9. Y. Ding, T. Hussain, and D.G. McCartney, High-Temperature Oxidation of HVOF Thermally Sprayed NiCr-Cr3C2 Coatings: Microstructure and Kinetics, J. Mater. Sci., 2015, 50(20), p 6808-6821

    Article  Google Scholar 

  10. E. Sadeghimeresht, N. Markocsan, P. Nylén, and S. Björklund, Corrosion Performance of Bi-Layer Ni/Cr2C3-NiCr HVAF Thermal Spray Coating, Appl. Surf. Sci., 2016, 369, p 470-481

    Article  Google Scholar 

  11. D.X. Fu, J.N. Liu, E.B. Liu, Z.B. Cai, X.F. Cui, and G. Jin, Thermal Shock Resistance of Plasma Sprayed Multi-Layered Functionally Graded Cr3C2-NiCr Coatings, Mater. Sci. Forum, 2016, 852, p 1000-1005

    Article  Google Scholar 

  12. A. Lekatou, D. Zois, A.E. Karantzalis, and D. Grimanelis, Electrochemical Behaviour of Cermet Coatings with a Bond Coat on Al7075: Pseudopassivity, Localized Corrosion and Galvanic Effect Considerations in a Saline Environment, Corros. Sci., 2010, 52(8), p 2616-2635

    Article  Google Scholar 

  13. P. Poza, C.J. Múnez, M.A. Garrido-Maneiro, S. Vezzù, S. Rech, and A. Trentin, Mechanical Properties of Inconel 625 Cold-Sprayed Coatings after Laser Remelting. Depth Sensing Indentation Analysis, Surf. Coat. Technol., 2014, 243, p 51-57

    Article  Google Scholar 

  14. S. García-Rodríguez, A.J. López, B. Torres, and J. Rams, 316L Stainless Steel Coatings on ZE41 Magnesium Alloy Using HVOF Thermal Spray for Corrosion Protection, Surf. Coat. Technol., 2016, 287, p 9-19

    Article  Google Scholar 

  15. E. Sadeghimeresht, N. Markocsan, and P. Nylén, Microstructural and Electrochemical Characterization of Ni-Based Bi-Layer Coatings Produced by the HVAF Process, Surf. Coat. Technol., 2016, 304, p 606-619

    Article  Google Scholar 

  16. C. Godoy, M.M. Lima, M.M.R. Castro, and J.C. Avelar-Batista, Structural Changes in High-Velocity Oxy-Fuel Thermally Sprayed WC-Co Coatings for Improved Corrosion Resistance, Surf. Coat. Technol., 2004, 188, p 1-6

    Article  Google Scholar 

  17. G. Bolelli, V. Cannillo, L. Lusvarghi, R. Rosa, A. Valarezo, W.B. Choi, R. Dey, C. Weyant, and S. Sampath, Functionally Graded WC-Co/NiAl HVOF Coatings for Damage Tolerance, Wear and Corrosion Protection, Surf. Coat. Technol., 2012, 206(8), p 2585-2601

    Article  Google Scholar 

  18. C. Xu, L. Du, B. Yang, and W. Zhang, The Effect of Al Content on the Galvanic Corrosion Behaviour of Coupled Ni/Graphite and Ni-Al Coatings, Corros. Sci., 2011, 53(6), p 2066-2074

    Article  Google Scholar 

  19. K. Ishikawa, T. Suzuki, S. Tobe, and Y. Kitamura, Resistance of Thermal-Sprayed Duplex Coating composed of Aluminum and 80Ni-20Cr Alloy Against Aqueous Corrosion, J. Therm. Spray Technol., 2001, 10(3), p 520-525

    Article  Google Scholar 

  20. S. Kuroda, J. Kawakita, T. Fukushima, and S. Tobe, Importance of the Adhesion of HVOF Sprayed Coatings for Aqueous Corrosion Resistance, Mater. Trans., 2003, 44(3), p 381-388

    Article  Google Scholar 

  21. E. Celik, I. Ozdemir, E. Avci, and Y. Tsunekawa, Corrosion Behaviour of Plasma Sprayed Coatings, Surf. Coat. Technol., 2005, 193(1-3), p 297-302

    Article  Google Scholar 

  22. J.M. Guilemany, N. Espallargas, P.H. Suegama, and A.V. Benedetti, Comparative Study of Cr3C2-NiCr Coatings Obtained by HVOF and Hard Chromium Coatings, Corros. Sci., 2006, 48(10), p 2998-3013

    Article  Google Scholar 

  23. J.A.C. Miramontes, J.Y.A. Calahorra, A.T. Estrada, G.P. Basulto, C.P. Salas, and F.A. Calderon, Evaluation of the Electrochemical Behavior in Acid Media of HVOF-Spray Alloy Coatings, ECS Trans., 2015, 64(26), p 81-87

    Article  Google Scholar 

  24. G. Bolelli, T. Börner, A. Milanti, L. Lusvarghi, J. Laurila, H. Koivuluoto, K. Niemi, and P. Vuoristo, Tribological Behavior of HVOF- and HVAF-Sprayed Composite Coatings Based on Fe-Alloy + WC − 12% Co, Surf. Coat. Technol., 2014, 248, p 104-112

    Article  Google Scholar 

  25. E. Sadeghimeresht, H. Hooshyar, N. Markocsan, S. Joshi, and P. Nylén, Oxidation Behavior of HVAF-Sprayed NiCoCrAlY Coating in H2-H2O Environment, Oxid. Met., 2016, 86, p 299-314

    Google Scholar 

  26. E. Sadeghimeresht, N. Markocsan, and P. Nylén, A Comparative Study of Corrosion Resistance for HVAF-Sprayed Fe- and Co-Based Coatings, Coatings, 2016, 6(2), p 16

    Article  Google Scholar 

  27. P. Roberge, Corrosion Engineering: Principles and Practice, 1st ed., McGraw-Hill Education, New York, 2008

    Google Scholar 

  28. A. Milanti, V. Matikainen, H. Koivuluoto, G. Bolelli, L. Lusvarghi, and P. Vuoristo, Effect of Spraying Parameters on the Microstructural and Corrosion Properties of HVAF-Sprayed Fe-Cr-Ni-B-C Coatings, Surf. Coat. Technol., 2015, 277, p 81-90

    Article  Google Scholar 

  29. S. Matthews, B. James, and M. Hyland, The Role of Microstructure in the High Temperature Oxidation Mechanism of Cr3C2-NiCr Composite Coatings, Corros. Sci., 2009, 51(5), p 1172-1180

    Article  Google Scholar 

  30. ASTM B276-05, Standard Test Method for Apparent Porosity in Cemented Carbides, ASTM International, West Conshohocken, PA, 2015. www.astm.org

  31. Z. Zeng, N. Sakoda, T. Tajiri, and S. Kuroda, Structure and Corrosion Behavior of 316L Stainless Steel Coatings Formed by HVAF Spraying With and Without Sealing, Surf. Coat. Technol., 2008, 203(3-4), p 284-290

    Article  Google Scholar 

  32. D. Seo and K. Ogawa, Isothermal Oxidation Behavior of Plasma Sprayed MCrAlY Coatings, Advanced Plasma Spray Applications, H. Jazi, Ed., InTech Europe, 2012, p 61-82

  33. S. Frangini, A. Masci, and A. Di Bartolomeo, Cr7C3-Based Cermet Coating Deposited on Stainless Steel by Electrospark Process: Structural Characteristics and Corrosion Behavior, Surf. Coat. Technol., 2002, 149(2-3), p 279-286

    Article  Google Scholar 

  34. M.M. Verdian, K. Raeissi, and M. Salehi, Corrosion Performance of HVOF and APS Thermally Sprayed NiTi Intermetallic Coatings in 3.5% NaCl Solution, Corros. Sci., 2010, 52(3), p 1052-1059

    Article  Google Scholar 

  35. J. Porcayo-Calderon, O. Sotelo-Mazon, A. Luna-Ramirez, E. Porcayo-Palafox, V.M. Salinas-Bravo, and L. Martinez-Gomez, Electrochemical Behavior of NiAl and Ni3Al Intermetallic Coatings in 1.0 M NaOH Solution, Int. J. Electrochem. Sci., 2015, 10(8), p 6241-6256

    Google Scholar 

  36. M. Akhtari Zavareh, A.A.D.M. Sarhan, B.B. Razak, and W.J. Basirun, The Tribological and Electrochemical Behavior of HVOF-Sprayed Cr3C2-NiCr Ceramic Coating on Carbon Steel, Ceram. Int., 2015, 41(4), p 5387-5396

    Article  Google Scholar 

  37. A. Lekatou, E. Regoutas, and A.E. Karantzalis, Corrosion Behaviour of Cermet-Based Coatings with a Bond Coat in 0.5 M H2SO4, Corros. Sci., 2008, 50(12), p 3389-3400

    Article  Google Scholar 

  38. Z. Bergant, U. Trdan, and J. Grum, Effect of High-Temperature Furnace Treatment on the Microstructure and Corrosion Behavior of NiCrBSi Flame-Sprayed Coatings, Corros. Sci., 2014, 88, p 372-386

    Article  Google Scholar 

  39. J.M. Guilemany, N. Cinca, S. Dosta, and A.V. Benedetti, Corrosion Behaviour of Thermal Sprayed Nitinol Coatings, Corros. Sci., 2009, 51(1), p 171-180

    Article  Google Scholar 

  40. X. Fan, B. Zou, L. Gu, C. Wang, Y. Wang, W. Huang, L. Zhu, and X. Cao, Investigation of the Bond Coats for Thermal Barrier Coatings on Mg Alloy, Appl. Surf. Sci., 2013, 265, p 264-273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Sadeghimeresht.

Additional information

This article is an invited paper selected from presentations at the 2016 International Thermal Spray Conference, held May 10-12, 2016, in Shanghai, P. R. China, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghimeresht, E., Markocsan, N. & Nylén, P. Microstructure Effect of Intermediate Coat Layer on Corrosion Behavior of HVAF-Sprayed Bi-Layer Coatings. J Therm Spray Tech 26, 243–253 (2017). https://doi.org/10.1007/s11666-016-0484-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0484-7

Keywords

Navigation