Skip to main content
Log in

Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s−1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Axinte, Metallic Glasses from “Alchemy” to Pure Science: Present and Future of Design, Processing and Applications of Glassy Metals, Mater. Des., 2012, 35, p 518-556

    Article  Google Scholar 

  2. J.Q. Wang, Y.H. Liu, M.W. Chen, G.Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, and J.H. Perepezko, Rapid Degradation of Azo Dye by Fe-Based Metallic Glass Powder, Adv. Funct. Mater., 2012, 22, p 2567-2570

    Article  Google Scholar 

  3. A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys, Acta Mater., 2000, 48(1), p 279-306

    Article  Google Scholar 

  4. A.T. Patel and A. Pratap, Study of Kinetics of Glass Transition of Metallic Glasses, J. Therm. Anal. Calorim., 2012, 110(2), p 567-571

    Article  Google Scholar 

  5. G. Pookat, H. Thomas, S. Thomas, S.H. Al-Harthi, L. Raghavan, I. Al-Omari, and M.R. Anantharaman, Evolution of Structural and Magnetic Properties of Co-Fe Based Metallic Glass Thin Films with Thermal Annealing, Surf. Coat. Technol., 2013, 236, p 246-251

    Article  Google Scholar 

  6. W.H. Wang, C. Dong, and C.H. Shek, Bulk Metallic Glasses, Mater. Sci. Eng., 2004, 44(2), p 45-89

    Google Scholar 

  7. W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology, Mrs Bull., 1999, 24, p 42-56

    Article  Google Scholar 

  8. A. Concustell, G. Alcala, S. Mato, T.G. Woodcock, A. Gebert, J. Eckert, and M.D. Baró, Effect of Relaxation and Primary Nanocrystallization on the Mechanical Properties of Cu 60 Zr 22 Ti 18 Bulk Metallic Glass, Intermetallics, 2005, 13(11), p 1214-1219

    Article  Google Scholar 

  9. A.L. Greer, Y.Q. Cheng, and E. Ma, Shear Bands in Metallic Glasses, Mater. Sci. Eng., 2013, 74(4), p 71-132

    Article  Google Scholar 

  10. D.B. Miracle, A. Concustell, Y. Zhang, A.R. Yavari, and A.L. Greer, Shear Bands in Metallic Glasses: Size Effects on Thermal Profiles, Acta Mater., 2011, 59(7), p 2831-2840

    Article  Google Scholar 

  11. S. Ding, Y. Liu, Y. Li, Z. Liu, S. Sohn, F.J. Walker, and J. Schroers, Combinatorial Development of Bulk Metallic Glasses, Nat Mater., 2014, 13(5), p 494-500

    Article  Google Scholar 

  12. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5-6), p 794-808

    Article  Google Scholar 

  13. W.Y. Li and C.J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Therm. Spray Technol., 2005, 14(3), p 391-396

    Article  Google Scholar 

  14. W.Y. Li, H. Liao, G. Douchy, and C. Coddet, Optimal Design of a Cold Spray Nozzle by Numerical Analysis of Particle Velocity and Experimental Validation with 316l Stainless Steel Powder, Mater. Des., 2007, 28(7), p 2129-2137

    Article  Google Scholar 

  15. S. Grigoriev, A. Okunkova, A. Sova, P. Bertrand, and I. Smurov, Cold Spraying: From Process Fundamentals Towards Advanced Applications, Surf. Coat. Technol., 2005, 268, p 77-84

    Article  Google Scholar 

  16. H. Tabbara, S. Gu, D. McCartney, T. Price, and P. Shipway, Study on Process Optimization of Cold Gas Spraying, J. Therm. Spray Technol., 2011, 20(3), p 608-620

    Article  Google Scholar 

  17. T. Klassen, F. Gärtner, T. Schmidt, J.O. Kliemann, K. Onizawa, K.R. Donner, and H. Kreye, Basic Principles and Application Potentials of Cold Gas Spraying, Materialwissenschaft und Werkstofftechnik, 2010, 41(7), p 575-584

    Article  Google Scholar 

  18. J. Villafuerte, Current and Future Applications of Cold Spray Technology, Metal Finish., 2010, 108(1), p 37-39

    Article  Google Scholar 

  19. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, and H. Kreye, On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176

    Article  Google Scholar 

  20. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  21. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  Google Scholar 

  22. M. Chen, Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility, Annu. Rev. Mater. Res., 2008, 38, p 445-469

    Article  Google Scholar 

  23. T.G. Nieh and J. Wadsworth, Homogeneous Deformation of Bulk Metallic Glasses, Scr. Mater., 2006, 54(3), p 387-392

    Article  Google Scholar 

  24. S. Yoon, H.J. Kim, G. Bae, B. Kim, and C. Lee, Formation of Coating and Tribological Behavior of Kinetic Sprayed Fe-Based Bulk Metallic Glass, J. Alloys. Compd, 2011, 509(2), p 347-353

    Article  Google Scholar 

  25. S. Yoon, G. Bae, Y. Xiong, S. Kumar, K. Kang, J.J. Kim, and C. Lee, Strain-Enhanced Nanocrystallization of a CuNiTiZr Bulk Metallic Glass Coating by a Kinetic Spraying Process, Acta Mater., 2009, 57(20), p 6191-6199

    Article  Google Scholar 

  26. A. List, F. Gärtner, T. Schmidt, and T. Klassen, Impact Conditions for Cold Spraying of Hard Metallic Glasses, J. Therm. Spray Technol., 2012, 21(3-4), p 531-540

    Article  Google Scholar 

  27. P.D. Olmsted, Perspectives on Shear Banding in Complex Fluids, Rheol Acta, 2008, 47(3), p 283-300

    Article  Google Scholar 

  28. A. Concustell, J. Henao, S. Dosta, N. Cinca, I.G. Cano, and J.M. Guilemany, On the Formation of Metallic Glass Coatings by Means of Cold Gas Spray Technology, J. Alloys Compd, 2015, 651, p 764-772

    Article  Google Scholar 

  29. J. Henao, A. Concustell, I.G. Cano, N. Cinca, S. Dosta, and J.M. Guilemany, Influence of Cold Gas Spray Process Conditions on the Microstructure of Fe-Based Amorphous Coatings, J. Alloys Compd, 2015, 622, p 995-999

    Article  Google Scholar 

  30. J.W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon, Oxford, 1975

    Google Scholar 

  31. K. Kim, M. Watanabe, and S. Kuroda, Bonding Mechanisms of Thermally Softened Metallic Powder Particles and Substrates Impacted at High Velocity, Surf. Coat. Technol., 2010, 204(14), p 2175-2180

    Article  Google Scholar 

  32. S. Yin, X.F. Wang, W.Y. Li, and X.P. Guo, Examination on Substrate Preheating Process in Cold Gas Dynamic Spraying, J. Therm. Spray Technol., 2011, 20(4), p 852-859

    Article  Google Scholar 

  33. K. Yokoyama, M. Watanabe, S. Kuroda, Y. Gotoh, T. Schmidt, and F. Gärtner, Simulation of Solid Particle Impact Behavior for Spray Processes, Mater. Trans., 2006, 47(7), p 1697-1702

    Article  Google Scholar 

  34. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219(3), p 211-227

    Article  Google Scholar 

  35. D. Zhang, P.H. Shipway, and D.G. McCartney, Cold Gas Dynamic Spraying of Aluminum: the Role of Substrate Characteristics In Deposit Formation, J. Therm. Spray Technol., 2005, 14(1), p 109-116

    Article  Google Scholar 

  36. P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, and C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol., 2010, 19(3), p 620-634

    Article  Google Scholar 

  37. T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold-Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272

    Article  Google Scholar 

  38. X.K. Suo, M. Yu, W.Y. Li, M.P. Planche, and H.L. Liao, Effect of Substrate Preheating on Bonding Strength of Cold-Sprayed Mg Coatings, J. Therm. Spray Technol., 2012, 21(5), p 1091-1098

    Article  Google Scholar 

  39. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681-688

    Article  Google Scholar 

  40. L. Ajdelsztajn, E.J. Lavernia, B. Jodoin, P. Richer, and E. Sansoucy, Cold Gas Dynamic Spraying of Iron-Base Amorphous Alloy, J. Therm. Spray Technol., 2006, 15(4), p 495-500

    Article  Google Scholar 

  41. S. Yoon, C. Lee, H. Choi, H. Kim, and J. Bae, Impacting Behavior of Bulk Metallic Glass Powder at an Abnormally High Strain Rate During Kinetic Spraying, Mater. Sci. Eng., 2007, 449, p 911-915

    Article  Google Scholar 

  42. http://rsbweb.nih.gov/ij/index.html Accessed 04 Feb 2016.

  43. U. Prisco, Size-Dependent Distributions of Particle Velocity and Temperature at Impact in the Cold-Gas Dynamic-Spray Process, J. Mater. Process. Technol., 2015, 216, p 302-314

    Article  Google Scholar 

  44. http://www.matweb.com/. Accessed 04 February 2016.

  45. M.A. Munoz-Morris, S. Surinach, M. Gich, M.D. Baró, and D.G. Morris, Crystallization of a Al-4Ni-6Ce Glass and its Influence on Mechanical Properties, Acta Mater., 2003, 51(4), p 1067-1077

    Article  Google Scholar 

  46. J. Wu, H. Fang, S. Yoon, H. Kim, and C. Lee, The Rebound Phenomenon in Kinetic Spraying Deposition, Scr. Mater., 2006, 54(4), p 665-669

    Article  Google Scholar 

  47. A. List, F. Gärtner, T. Mori, M. Schulze, H. Assadi, S. Kuroda, and T. Klassen, Cold Spraying of Amorphous Cu50Zr50 Alloys, J. Therm. Spray Technol., 2015, 24(1-2), p 108-118

    Google Scholar 

  48. S. Yoon, C. Lee, H. Choi, and H. Jo, Kinetic Spraying Deposition Behavior of Bulk Amorphous Nitizrsisn Feedstock, Mater. Sci. Eng., 2006, 415(1), p 45-52

    Article  Google Scholar 

  49. A.L. Yarin, Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing, Annu. Rev. Fluid Mech., 2006, 38, p 159-192

    Article  Google Scholar 

  50. X. Zhou, X. Wu, S. Mou, J. Liu, and J. Zhang, Simulation of Deposition Behavior of Bulk Amorphous Particles in Cold Spraying, Mater. Trans., 2010, 51(10), p 1977-1980

    Article  Google Scholar 

  51. S.H. Kang, J.H. Lee, J.S. Cheon, and Y.T. Im, The Effect of Strain-Hardening on Frictional Behavior in Tip Test, Int. J. Mech. Sci., 2004, 46(6), p 855-869

    Article  Google Scholar 

  52. J.R. Davis, Tensile testing, chapter 7, 2nd ed., ASM interantional, Ohio, 2004

    Google Scholar 

  53. A. McDonald and S. Chandra, Kinematic Viscosities of High-Temperature Materials Used in Plasma Spraying, J. Am. Ceram. Soc., 2011, 94(6), p 1865-1871

    Article  Google Scholar 

  54. H. Chiriac, M. Tomut, C. Naum, F. Necula, and V. Nagacevschi, On the Measurement of Surface Tension for Liquid Fesib Glass-Forming Alloys by Sessile Drop Method, Mater. Sci. Eng., 1997, 226, p 341-343

    Article  Google Scholar 

  55. X. Chen and J.W. Hutchinson, Particle Impact on Metal Substrates with Application to Foreign Object Damage to Aircraft Engines, J. Mech. Phys. Solids, 2002, 50(12), p 2669-2690

    Article  Google Scholar 

  56. R. Probstein, Physicochemical Hydrodynamics: An Introduction, Chapter 9, Wiley, New York, 2005, p 286

    Google Scholar 

  57. P. Gould, Introduction to Linear Elasticity, Chapter 3, Springer Science & Business Media, Berlin, 2013, p 64-65

    Book  Google Scholar 

  58. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, and M. Izawa, Effect of Substrate Temperature on Deposition Behavior of Copper Particles on Substrate Surfaces in the Cold Spray Process, J. Therm. Spray Technol., 2007, 16(5-6), p 643-650

    Article  Google Scholar 

  59. M.D. Demetriou and W.L. Johnson, Shear Flow Characteristics and Crystallization Kinetics During Steady Non-Isothermal Flow of Vitreloy-1, Acta Mater., 2004, 52(12), p 3403-3412

    Article  Google Scholar 

  60. M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, and Q. Xue, Shear Localization in Dynamic Deformation of Materials: Microstructural Evolution and Self-Organization, Mater. Sci. Eng, 2001, 317(1), p 204-225

    Article  Google Scholar 

  61. F. Spaepen, A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses, Acta Metall., 1977, 25(4), p 407-415

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank IMPACT INNOVATIONS GmbH for their collaboration in coating deposition, EPSON-ATMIX for providing the powder used in this work, and the Generalitat de Catalunya through 2014 SGR 1558 for the financial support. The authors also acknowledge the CPT grant for supporting “John Henao” in his PhD program at the Universitat de Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Henao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henao, J., Concustell, A., Dosta, S. et al. Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying. J Therm Spray Tech 25, 992–1008 (2016). https://doi.org/10.1007/s11666-016-0419-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0419-3

Keywords

Navigation