Skip to main content
Log in

Fatigue Performance of TBCs on Hastelloy X Substrate During Cyclic Bending

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Our previous experiments with low-cost steel substrates confirmed that individual steps of conventional thermal barrier coating (TBC) deposition may influence fatigue properties of the coated samples differently. In the presented study, testing was carried out for TBC samples deposited on industrially more relevant Hastelloy X substrates. Samples were tested after each step of the TBC deposition process: as-received (non-coated), grit-blasted, bond-coated (NiCoCrAlY), and bond-coated + top-coated yttria-stabilized zirconia (YSZ). Conventional atmospheric plasma spraying (APS) was used for deposition of bond coat and top coat. In addition, for one half of the samples, dual-layer bond coat was prepared by combination of high-velocity air-fuel (HVAF) and APS processes. Samples were tested in the as-sprayed condition and after 100 hours annealing at 980 °C, which simulated application-relevant in-service conditions. Obtained results showed that each stage of the TBC manufacturing process as well as the simulated in-service heat exposure may significantly influence the fatigue properties of the TBC coated part. HVAF grit-blasting substantially increased the fatigue performance of the uncoated substrates. This beneficial effect was suppressed by deposition of APS bond coat but not by deposition of dual-layer HVAF + APS bond coat. All heat-treated samples showed again enhanced fatigue performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hastelloy X Alloy, Hayness International, Inc., https://www.haynesintl.com/pdf/h3009.pdf, 1997. Accessed 10 April, 2015.

  2. N. Curry, N. Markocsan, L. Östergren, X.-H. Li, and M. Dorfman, Evaluation of the Lifetime and Thermal Conductivity of Dysprosia-Stabilized Thermal Barrier Coating Systems, J. Therm. Spray Technol., 2013, 22(6), p 864-872

    Article  Google Scholar 

  3. W.R. Chen, Degradation of a TBC with HVOF-CoNiCrAlY Bond Coat, J. Therm. Spray Technol., 2014, 23(5), p 876-884

    Article  Google Scholar 

  4. R.S. Lima, D. Nagy, and B.R. Marple, Bond Coat Engineering Influence on the Evolution of the Microstructure, Bond Strength, and Failure of TBCs Subjected to Thermal Cycling, J. Therm. Spray Technol., 2014, 24(1-2), p 152-159

    Google Scholar 

  5. M. Di Ferdinando, A. Fossati, A. Lavacchi, U. Bardi, F. Borgioli, C. Borri, C. Giolli, and A. Scrivani, Isothermal Oxidation Resistance Comparison between Air Plasma Sprayed, Vacuum Plasma Sprayed and High Velocity Oxygen Fuel Sprayed CoNiCrAlY Bond Coats, Surf. Coat. Technol., 2010, 204(15), p 2499-2503

    Article  Google Scholar 

  6. K. Szymański, M. Góral, T. Kubaszek, and P.C. Monteiro, Microstructure of TBC Coatings Deposited by HVAF and PS-PVD Methods, Solid State Phenom., 2015, 227, p 373-376

    Article  Google Scholar 

  7. G.-J. Yang, X.-D. Xiang, L.-K. Xing, D.-J. Li, C.-J. Li, and C.-X. Li, Isothermal Oxidation Behavior of NiCoCrAlTaY Coating Deposited by High Velocity Air-Fuel Spraying, J. Therm. Spray Technol., 2012, 21(3-4), p 391-399

    Article  Google Scholar 

  8. A. Ganvir, N. Curry, N. Markocsan, P. Nylén, and F.-L. Toma, Comparative Study of Suspension Plasma Sprayed and Suspension High Velocity Oxy-Fuel Sprayed YSZ Thermal Barrier Coatings, Surf. Coat. Technol., 2015, 268, p 70-76

    Article  Google Scholar 

  9. J. Alcala, A.C. Barone, and M. Anglada, Influence of Plastic Hardening on Surface Deformation Modes around Vickers and Spherical Indents, Acta Mater., 2000, 48(13), p 3451-3464

    Article  Google Scholar 

  10. V. Viswanathan, G. Dwivedi, and S. Sampath, Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance, J. Am. Ceram. Soc., 2014, 97(9), p 2770-2778

    Article  Google Scholar 

  11. E.S. Puchi-Cabrera, M.H. Staia, M.J. Ortiz-Mancilla, J.G. La Barbera-Sosa, E.A.O. Pérez, C. Villalobos-Gutiérrez, S. Bellayer, M. Traisnel, D. Chicot, and J. Lesage, Fatigue Behavior of a SAE 1045 Steel Coated with Colmonoy 88 Alloy Deposited by HVOF Thermal Spray, Surf. Coat. Technol., 2010, 205(4), p 1119-1126

    Article  Google Scholar 

  12. K. Padilla, A. Velásquez, J.A. Berríos, and E.S. Puchi Cabrera, Fatigue Behavior of a 4140 Steel Coated with a NiMoAl Deposit Applied by HVOF Thermal Spray, Surf. Coat. Technol., 2002, 150(2-3), p 151-162

    Article  Google Scholar 

  13. E.S. Puchi-Cabrera, M.H. Staia, J. Lesage, D. Chicot, J.G. La Barbera-Sosa, and E.A. Ochoa-Pérez, Fatigue Performance of a SAE 1045 Steel Coated with a Colmonoy 88 Alloy Deposited by HVOF Thermal Spraying, Surf. Coat. Technol., 2006, 201(5), p 2038-2045

    Article  Google Scholar 

  14. A. Ibrahim, R.S. Lima, C.C. Berndt, and B.R. Marple, Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings, Surf. Coat. Technol., 2007, 201(16-17), p 7589-7596

    Article  Google Scholar 

  15. C.J. Villalobos-Gutiérrez, G.E. Gedler-Chacón, J.G. La Barbera-Sosa, A. Piñeiro, M.H. Staia, J. Lesage, D. Chicot, G. Mesmacque, and E.S. Puchi-Cabrera, Fatigue and Corrosion Fatigue Behavior of an AA6063-T6 Aluminum Alloy Coated with a WC-10Co-4Cr Alloy Deposited by HVOF Thermal Spraying, Surf. Coat. Technol., 2008, 202(18), p 4572-4577

    Article  Google Scholar 

  16. J.A.M. de Camargo, H.J. Cornelis, V.M.O.H. Cioffi, and M.Y.P. Costa, Coating Residual Stress Effects on Fatigue Performance of 7050-T7451 Aluminum Alloy, Surf. Coat. Technol., 2007, 201(24), p 9448-9455

    Article  Google Scholar 

  17. R.T.R. McGrann, D.J. Greving, J.R. Shadley, E.F. Rybicki, B.E. Bodger, and D.A. Somerville, The Effect of Residual Stress in HVOF Tungsten Carbide Coatings on the Fatigue Life in Bending of Thermal Spray Coated Aluminum, J. Therm. Spray Technol., 1998, 7(4), p 546-552

    Article  Google Scholar 

  18. R.T.R. McGrann, Mechanical Fatigue Testing of Thermal Spray Coated Specimens: A Summary of Recent Developments, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, ASM International, Singapore, 2001, p 985-992

  19. H.J.C. Voorwald, R.C. Souza, W.L. Pigatin, and M.O.H. Cioffi, Evaluation of WC-17Co and WC-10Co-4Cr Thermal Spray Coatings by HVOF on the Fatigue and Corrosion Strength of AISI, 4340 Steel, Surf. Coat. Technol., 2005, 190(2-3), p 155-164

    Article  Google Scholar 

  20. R.C. Souza, H.J.C. Voorwald, and M.O.H. Cioffi, Fatigue Strength of HVOF Sprayed Cr3C2-25NiCr and WC-10Ni on AISI, 4340 Steel, Surf. Coatings Technol., 2008, 203(3-4), p 191-198

    Article  Google Scholar 

  21. B. Riccardi, R. Montanari, M. Casadei, G. Costanza, G. Filacchioni, and A. Moriani, Optimisation and Characterisation of Tungsten Thick Coatings on Copper Based Alloy Substrates, J. Nucl. Mater., 2006, 352(1-3), p 29-35

    Article  Google Scholar 

  22. M.Y.P. Costa, M.L.R. Venditti, H.J.C. Voorwald, M.O.H. Cioffi, and T.G. Cruz, Effect of WC-10%Co-4%Cr Coating on the Ti-6Al-4V Alloy Fatigue Strength, Mater. Sci. Eng. A, 2009, 507(1-2), p 29-36

    Article  Google Scholar 

  23. H.Y. Al-Fadhli, J. Stokes, M.S.J. Hashmi, and B.S. Yilbas, HVOF Coating of Welded Surfaces: Fatigue and Corrosion Behaviour of Stainless Steel Coated with Inconel-625 Alloy, Surf. Coatings Technol., 2006, 200(16-17), p 4904-4908

    Article  Google Scholar 

  24. A. Agüero, F. Camón, J. García de Blas, J.C. del Hoyo, R. Muelas, A. Santaballa, S. Ulargui, and P. Vallés, HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators, J. Therm. Spray Technol., 2011, 20(6), p 1292-1309

    Article  Google Scholar 

  25. R. Subramanian, Y. Mori, S. Yamagishi, and M. Okazaki, Thermo-Mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen, Metall. Mater. Trans. A, 2015, 46(9), p 3999-4012

    Article  Google Scholar 

  26. K. Obrtlík, S. Hutařová, L. Čelko, M. Juliš, T. Podrábský, and I. Šulák, Effect of Thermal Barrier Coating on Low Cycle Fatigue Behavior of Cast Inconel 713LC at 900 °C, Adv. Mater. Res., 2014, 891-892, p 848-853

    Article  Google Scholar 

  27. M. Azadi, G.H. Farrahi, G. Winter, and W. Eichlseder, Experimental Fatigue Lifetime of Coated and Uncoated Aluminum Alloy under Isothermal and Thermo-Mechanical Loadings, Ceram. Int., 2013, 39(8), p 9099-9107

    Article  Google Scholar 

  28. E. Tzimas, H. Müllejans, S. Peteves, J. Bressers, and W. Stamm, Failure of Thermal Barrier Coating Systems under Cyclic Thermomechanical Loading, Acta Mater., 2000, 48(18-19), p 4699-4707

    Article  Google Scholar 

  29. H. Waki and A. Kobayashi, Influence of the Mechanical Properties of CoNiCrAlY under-Coating on the High Temperature Fatigue Life of YSZ Thermal-Barrier-Coating System, Vacuum, 2008, 83(1), p 171-174

    Article  Google Scholar 

  30. A.K. Ray, E.S. Dwarakadasa, D.K. Das, V.R. Ranganath, B. Goswami, J.K. Sahu, and J.D. Whittenberger, Fatigue Behavior of a Thermal Barrier Coated Superalloy at 800 C, Mater. Sci. Eng. A., 2007, 448(1-2), p 294-298

    Article  Google Scholar 

  31. S. Hutařová, K. Obrtlík, M. Juliš, L. Čelko, M. Hrčková, and T. Podrábský, Degradation of TBC Coating during Low-Cycle Fatigue Tests at High Temperature, Key Eng. Mater., 2014, 592-593, p 461-464

    Article  Google Scholar 

  32. R. Mušálek, O. Kovářík, J. Medřický, N. Curry, and S. Bjorklund, Fatigue Testing of TBC on Structural Steel by Cyclic Bending, J. Therm. Spray Technol., 2015, 24(1-2), p 168-174

    Google Scholar 

  33. R. Mušálek, O. Kovářík, T. Skiba, P. Haušild, M. Karlík, and J. Colmenares-Angulo, Fatigue Properties of Fe-Al Intermetallic Coatings Prepared by Plasma Spraying, Intermetallics, 2010, 18(7), p 1415-1418

    Article  Google Scholar 

  34. J. Cizek, O. Kovarik, J. Siegl, K.A. Khor, and I. Dlouhy, Influence of Plasma and Cold Spray Deposited Ti Layers on High-Cycle Fatigue Properties of Ti6Al4 V Substrates, Surf. Coat. Technol., 2013, 217, p 23-33

    Article  Google Scholar 

  35. O. Kovarik, J. Siegl, J. Nohava, and P. Chraska, Young’s Modulus and Fatigue Behavior of Plasma-Sprayed Alumina Coatings, J. Therm. Spray Technol., 2005, 14(2), p 231-238

    Article  Google Scholar 

  36. O. Kovarik, J. Siegl, and Z. Prochazka, Fatigue Behavior of Bodies with Thermally Sprayed Metallic and Ceramic Deposits, J. Therm. Spray Technol., 2008, 17(4), p 525-532

    Article  Google Scholar 

  37. J. Cizek, K.A. Khor, J. Siegl, and J. Bensch, A Study on the Influence of Plasma Deposited HA and TiO2 Coatings on Fatigue Lives of Low-Carbon Steel Specimens with Respect to Various Powder In-Flight Properties, Thermal Spray 2009: Expanding Thermal Spray Performance to New Markets and Applications, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, G Montavon, Ed. May 4-7, 2009 Las Vegas, Nevada, Springer, 2010, p 361-365

  38. J. Siegl, J. Bensch, J. Čížek, and K.A. Khor, Influence of Spraying Conditions on Fatigue Behaviour of Hydroxyapatite Coatings, Acta Tech. CSAV (Ceskoslovensk Akad. Ved), 2007, 52(3), p 205-215

    Google Scholar 

  39. J. Cizek, M. Matejkova, I. Dlouhy, F. Siska, C.M. Kay, J. Karthikeyan, S. Kuroda, O. Kovarik, J. Siegl, K. Loke, and K.A. Khor, Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens, J. Therm. Spray Technol., 2015, 24(5), p 758-768

    Article  Google Scholar 

  40. O. Kovářík, P. Haušild, J. Siegl, J. Matějíček, and V. Davydov, Fatigue Life of Layered Metallic and Ceramic Plasma Sprayed Coatings, Proc. Mater. Sci., 2014, 3, p 586-591

    Article  Google Scholar 

  41. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3-20

    Article  Google Scholar 

  42. J. Nohava, R. Mušálek, J. Matějíček, and M. Vilémová, A Contribution to Understanding the Results of Instrumented Indentation on Thermal Spray Coatings—Case Study on Al2O3 and Stainless Steel, Surf. Coat. Technol., 2014, 240, p 243-249

    Article  Google Scholar 

  43. R.A. Winholtz and J.B. Cohen, Generalised Least-Squares Determination of Triaxial Stress States by X-Ray Diffraction and the Associated Errors, Aust. J. Phys., 1988, 41(2), p 189-199

    Article  Google Scholar 

  44. R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. Sect. A, 1952, 65(5), p 349-354

    Article  Google Scholar 

  45. A. Valarezo, G. Dwivedi, S. Sampath, R. Musalek, and J. Matejicek, Elastic and Anelastic Behavior of TBCs Sprayed at High-Deposition Rates, J. Therm. Spray Technol., 2014, 24(1-2), p 160-167

    Google Scholar 

  46. R. Musalek, J. Matejicek, M. Vilemova, and O. Kovarik, Non-Linear Mechanical Behavior of Plasma Sprayed Alumina Under Mechanical and Thermal Loading, J. Therm. Spray Technol., 2010, 19(1), p 422-428

    Article  Google Scholar 

  47. Y. Liu, T. Nakamura, G. Dwivedi, A. Valarezo, and S. Sampath, Anelastic Behavior of Plasma-Sprayed Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(12), p 4036-4043

    Article  Google Scholar 

  48. E.-R. Baek, P. Sung-Sang, R. Sihotang, and S. Choi, Heat Treatment of the Degraded Hastelloy-X for High Cycle Fatigue Properties, 9th International Conference on Fracture & Strength of Solids, June 9-13, 2013 (Jeju, Korea), 2013, p 1-10

  49. G. Di Girolamo, M. Alfano, L. Pagnotta, A. Taurino, J. Zekonyte, and R.J.K. Wood, On the Early Stage Isothermal Oxidation of APS CoNiCrAlY Coatings, J. Mater. Eng. Perform., 2012, 21(9), p 1989-1997

    Article  Google Scholar 

  50. J.D. Almer, J.B. Cohen, and B. Moran, The Effects of Residual Macrostresses and Microstresses on Fatigue Crack Initiation, Mater. Sci. Eng. A, 2000, 284(1-2), p 268-279

    Article  Google Scholar 

  51. J.D. Almer, J.B. Cohen, and R.A. Winholtz, The Effects of Residual Macrostresses and Microstresses on Fatigue Crack Propagation, Metall. Mater. Trans. A, 1998, 29(8), p 2127-2136

    Article  Google Scholar 

  52. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  53. R. Mušálek, C. Taltavull, A.J.L. Galisteo, and N. Curry, Evaluation of Failure Micromechanisms of Advanced Thermal Spray Coatings by In Situ Experiment, Key Eng. Mater., 2014, 606, p 187-190

    Article  Google Scholar 

  54. Y. Liu, T. Nakamura, V. Srinivasan, A. Vaidya, A. Gouldstone, and S. Sampath, Non-Linear Elastic Properties of Plasma-Sprayed Zirconia Coatings and Associated Relationships with Processing Conditions, Acta Mater., 2007, 55(14), p 4667-4678

    Article  Google Scholar 

Download references

Acknowledgment

The financial support of this study through project 14-36566G (Czech Science Foundation) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Musalek.

Additional information

This article is an invited paper selected from presentations at the 2015 International Thermal Spray Conference, held May 11-14, 2015, in Long Beach, California, USA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musalek, R., Kovarik, O., Tomek, L. et al. Fatigue Performance of TBCs on Hastelloy X Substrate During Cyclic Bending. J Therm Spray Tech 25, 231–243 (2016). https://doi.org/10.1007/s11666-015-0321-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0321-4

Keywords

Navigation