Skip to main content
Log in

Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Failure behavior of thermal barrier coated (TBC) Ni-based superalloy specimens were studied from the aspect of the effect of bond coat material behavior on low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) at various temperatures and under various loading conditions. Initially, monotonic tensile tests were carried out on a MCrAlY alloy bond coat material in the temperature range of 298 K to 1273 K (25 °C to 1000 °C). Special attention was paid to understand the ductile to brittle transition temperature (DBTT). Next, LCF and TMF tests were carried out on the thermal barrier coated Ni-based alloy IN738 specimen. After these tests, the specimens were sectioned to understand their failure mechanisms on the basis of DBTT of the bond coat material. Experimental results demonstrated that the LCF and TMF lives of the TBC specimen were closely related to the DBTT of the bond coat material, and also the TMF lives were different from those of LCF tests. It has also been observed that the crack density in the bond coat in the TBC specimen was significantly dependent on the test conditions. More importantly, not only the number of cracks but also the crack penetration probability into substrate were shown to be sensitive to the DBTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bernstein HL, Grant TS, McClung RC, Allen JM (1993) Thermomechanical Fatigue Behavior of Materials. American Society for Testing and Materials, West Conshohocken, pp 212–38.

    Book  Google Scholar 

  2. Y. Kadioglu and H. Sehitoglu: J. Eng. Mater. Technol., 1995, vol. 118, pp 94–102.

    Article  Google Scholar 

  3. B.B. Seth: Superalloys 2000(USA), 2000, pp. 3–16.

  4. National Research Council: Coating for High Temperature Structural Material; Trends and Opportunities, National Academy Press, Washington DC, 1996.

    Google Scholar 

  5. M.G. Hocking, V. Vasantasree and P.S. Sidky: Metallic and Ceramic Coatings, Longman Scientific and Technical Publishers, London, 1989.

    Google Scholar 

  6. T. Xu, M.Y. He, A.G. Evans: Acta Mater., 2003, vol. 51, pp. 3807–20.

    Article  Google Scholar 

  7. W.J. Quaddakers, A.K. Tyagi, D. Clemens, R. Anton, and L. Singheiser: Science and Technology III, 1999, pp. 119–30.

  8. J.P. Singh, B.G. Nair, G. Balakrishnan, D.P. Renusch, M.P. Sutaria and M.H. Grimsditch: J. Am. Ceram. Soc., 2001, vol. 84, pp. 2385–93.

    Article  Google Scholar 

  9. E. Tzimas, H. Müllejans, S.D. Peteves, J. Bressers and W. Stamm: Acta Mater., 2000, vol. 48, pp. 4699–707.

    Article  Google Scholar 

  10. E. Chataigner and L. Remy: Thermo-mechanical Fatigue Behavior of Materials, vol. 2, ASTM STP 1263, West Conshohocken, 1996, pp. 3–26.

  11. P.K.Wright: Mater. Sci. Eng., 1998, vol. 245, pp. 191–200.

    Article  Google Scholar 

  12. T.E. Strangman: Superalloys 1992, 7th International Symposium on Superalloys, Minerals, Metals and Materials Society, Warrendale, 1992, pp. 795–804.

  13. R. Nützel, E. Affeldt and M. Göken: Int. J. Fatigue, 2008, vol. 30, pp. 313–17.

    Article  Google Scholar 

  14. J. L.Chaboche and F.Gallerneau: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 405–18.

    Article  Google Scholar 

  15. O. Trunova, T. Beck, R. Herzog, R.W. Steinbrech and L. Singheiser: Surf. Coat. Technol., 2008, vol. 202, pp. 5027–32.

    Article  Google Scholar 

  16. Y.H. Zhang, P.J. Withers, M.D. Fox and D.M. Knowles: Mater. Sci. Technol.: 1999, vol. 15, pp. 1031–36.

    Article  Google Scholar 

  17. G.W. Goward: Surf. Coat. Technol., 1998, vol. 108, pp. 73–79.

    Article  Google Scholar 

  18. B. Baufeld and M. Schmücker: Surf. Coat. Technol., 2005, vol. 19, pp. 49–56.

    Article  Google Scholar 

  19. J. Shi, A.M. Karlsson, B. Baufeld and M. Bartsch: Mater. Sci. Eng., A, 2006, vol. 434, pp. 39–52.

    Article  Google Scholar 

  20. A.K. Ray, N. Roy, A.Kar, A.K. Ray, S.C. Bose, G. Das, J.K. Sahu, D.K. Das, B. Venkataraman, S.V. Joshi: Mater. Sci. Eng., A, 2009, vol. 505, pp. 96–104.

    Article  Google Scholar 

  21. Y. Itoh and M. Saitoh: J. Eng. Gas Turbines Power, 2005, vol. 127, pp. 807–13.

    Article  Google Scholar 

  22. K.J. Hemker, B.G. Mendis, C. Eberl: Mater. Sci. Eng., A, 2008, vol. 483, pp. 727–30.

    Article  Google Scholar 

  23. A. Jung and A. Schnell: Int. J. Fatigue, 2008, vol. 30, pp. 286–91.

    Article  Google Scholar 

  24. M. Okazaki, Y. Yamazaki, and K. Take: Thermo-Mechanical Fatigue Behavior of Materials, ASTM STP 1428, McGaw, MA, 2003, pp. 180–96.

  25. D. Sornette, T. Magnin and Y. Brechet: Europhys. Lett., 1992, vol. 20, pp. 443.

    Article  Google Scholar 

  26. S. Schmitz , T. Seibel, T. Beck, G. Rollmann, R. Krause and H. Gottschalk: Comput. Mater. Sci., 2013, vol. 79, pp. 584–90.

    Article  Google Scholar 

  27. M. Okazaki: Sci. Technol. Adv. Mater., 2001, vol. 2, pp. 357–66.

    Article  Google Scholar 

  28. A.G.D.L Yedra, A.M. Meizoso, R.R. Martin and J.L. Pedrejón: Int. J. Eng. Sci. Technol. 2011, Vol. 3, pp. 88–101.

    Google Scholar 

  29. M. Okazaki: in High Temperature Strength of Materials, Chap. 7, The Society of Material Science, Kyoto, 2008.

  30. M. Okazaki, Y. Yamazaki and K. Namba: J. Solid Mech. Mater. Eng., 2010, vol. 4, pp. 252–63.

    Article  Google Scholar 

Download references

Acknowledgment

Authors are grateful for the financial support from Grant-in-Aid for scientific research (#25249003) by Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajivgandhi Subramanian.

Additional information

Manuscript submitted October 12, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, R., Mori, Y., Yamagishi, S. et al. Thermo-mechanical Fatigue Failure of Thermal Barrier Coated Superalloy Specimen. Metall Mater Trans A 46, 3999–4012 (2015). https://doi.org/10.1007/s11661-015-2996-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2996-z

Keywords

Navigation