Skip to main content
Log in

Compositional Development as a Function of Spray Distance in Unshrouded/Shrouded Plasma-Sprayed Cr3C2-NiCr Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermal spraying of Cr3C2-NiCr composites generates varying degrees of carbide dissolution into the Ni binder. During high-temperature exposure, the carbide dissolution zones precipitate high concentrations of small carbides which develop into finely structured networks. This raises the possibility of producing unique tailored carbide composite structures through the generation of controlled carbide dissolution and appropriate heat treatment. The first step in this process is to produce a supersaturated Ni-Cr-C solid solution from which the carbide phase could be precipitated. In a previous work, a broad range of plasma parameters were trialed to assess their effect on the degree of carbide dissolution at a fixed spray distance of 100 mm. The current two-part work builds on the most promising plasma parameters from those trials. Part 2 of this article series investigated the effect of spray distance on the compositional development in Cr3C2-NiCr coatings during high-energy plasma spraying. The coating compositions were analyzed in detail and quantified through Rietveld fitting of the coating XRD patterns. Coating microstructural features were correlated with the observed variations in composition. The effect of the spray parameters and spray distance on the equilibrium coating compositions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. L.-M. Berger, Hardmetals as Thermal Spray Coatings, Powder Metall., 2007, 50(3), p 205-214

    Article  Google Scholar 

  2. S. Matthews, B. James, and M. Hyland, The Role of Microstructure in the High Velocity Erosion of Cr3C2-NiCr Thermal Spray Coatings: Part 1—As-Sprayed Coatings, Surf. Coat. Technol., 2009, 203, p 1086-1093

    Article  Google Scholar 

  3. F. Otsubo, H. Era, T. Uchida, and K. Kishitake, Properties of Cr3C2-NiCr Cermet Coating Sprayed by High Power Plasma and High Velocity Oxy-fuel Processes, J. Therm. Spray Technol., 2000, 9(4), p 499-504

    Article  Google Scholar 

  4. D. Poirier, J.-G. Legoux, and R. Lima, Engineering HVOF-Sprayed Cr3C2-NiCr Coatings: The Effect of Particle Morphology and Spraying Parameters on the Microstructure, Properties and High Temperature Wear Performance, J. Therm. Spray Technol., 2013, 22(2-3), p 280-289

    Article  Google Scholar 

  5. S. Zimmermann and H. Kreye, Chromium Carbide Coatings Produced with Various HVOF Spray Systems, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, Novelty, 1996, p 147-152

    Google Scholar 

  6. S. Matthews, “Erosion-Corrosion of Cr3C2-NiCr High Velocity Thermal Spray Coatings,” Ph.D. Thesis, Department of Chemical and Materials Engineering, The University of Auckland, 2004

  7. S. Matthews, M. Hyland, and B. James, Long-Term Carbide Development in High Velocity Oxygen Fuel/High Velocity Air Fuel Cr3C2-NiCr Coatings Heat Treated at 900°C, J. Therm. Spray Technol., 2004, 13(4), p 526-536

    Article  Google Scholar 

  8. S. Matthews, Development of High Carbide Dissolution/Low Carbon Loss Cr3C2-NiCr Coatings by Shrouded Plasma Spraying, Surf. Coat. Technol., 2014, 258, p 886–900

  9. S. Matthews, Carbide Dissolution/Carbon Loss as a function of Spray Distance in Unshrouded/Shrouded Plasma Sprayed Cr3C2-NiCr Coatings, J. Therm. Spray Technol., 2014, doi:10.1007/s11666-014-0210-2

    Google Scholar 

  10. E. Bouzy, G. le Caer, and E. Bauer-Grosse, New Metastable Carbides Produced by Crystallization of Amorphous CrC Alloys, Mater. Sci. Eng., A, 1991, 133(C), p 640-643

    Article  Google Scholar 

  11. L. He, Hexagonal Close-Packed Nickel or Ni3C?, J. Magn. Magn. Mater., 2010, 322(14), p 1991-1993

    Article  Google Scholar 

  12. A. Inoue and T. Masumoto, Formation of Nonequilibrium Cr3C Carbide in CrC Binary Alloys Quenched Rapidly from the Melt, Scr. Metall., 1979, 13(8), p 711-715

    Article  Google Scholar 

  13. A. Inoue, S. Sakai, H. Kimura, and T. Masumoto, Crystallization Temperature and Hardness of New Chromium-Based Amorphous Alloys, Trans. Jpn. Inst. Met., 1979, 20(5), p 255-262

    Article  Google Scholar 

  14. S. Loubière, C. Laurent, J.P. Bonino, and A. Rousset, A Metastable Chromium Carbide Powder Obtained by Carburization of a Metastable Chromium Oxide, J. Alloy. Compd., 1996, 243(1-2), p 59-66

    Article  Google Scholar 

  15. P. Nash, The Cr-Ni (Chromium-Nickel) System, Bull. Alloy Phase Diagrams, 1986, 7(5), p 466-476

    Article  Google Scholar 

  16. Z.L. Schaefer, K.M. Weeber, R. Misra, P. Schiffer, and R.E. Schaak, Bridging hcp-Ni and Ni 3C Via a Ni 3C 1-x Solid Solution: Tunable Composition and Magnetism in Colloidal Nickel Carbide Nanoparticles, Chem. Mater., 2011, 23(9), p 2475-2480

    Article  Google Scholar 

  17. R. Sinclair, T. Itoh, and R. Chin, In Situ TEM Studies of Metal-Carbon Reactions, Microsc. Microanal., 2002, 8(4), p 288-304

    Article  Google Scholar 

  18. M. Singleton and P. Nash, The C-Ni (Carbon-Nickel) System, Bull. Alloy Phase Diagrams, 1989, 10(2), p 121-126

    Article  Google Scholar 

  19. T.Y. Velikanova, A.A. Bondar, and A.V. Grytsiv, Chromium-Nickel-Carbon (Cr-Ni-C) Phase Diagram, J. Phase Equilib., 1999, 20(2), p 125-147

    Article  Google Scholar 

  20. M. Venkatraman and J.P. Neumann, The C-Cr (Carbon-Chromium) System, Bull. Alloy Phase Diagrams, 1990, 11(2), p 152-159

    Article  Google Scholar 

  21. B.J. Lee, On the Stability of Cr Carbides, Calphad, 1992, 16(2), p 121-149

    Article  Google Scholar 

  22. D.Y. Kim, M.S. Han, and J.G. Youn, Characterisation of Erosion Resistant Cr3C2-NiCr Plasma Sprayed Coatings, Practical Solutions for Engineering ProblemsProceedings of the 9th National Thermal Spray Conference, C.C. Berndt, Ed., ASM International, 1996, p. 123-128

  23. S.R. Nishitani, K.N. Ishihara, R.O. Suzuki, and P.H. Shingu, Metastable Solid Solubility Limit of Carbon in the Ni-C System, J. Mater. Sci. Lett., 1985, 4(7), p 872-875

    Article  Google Scholar 

  24. T. Tanaka, K.N. Ishihara, and P.H. Shingu, Formation of Metastable Phases of Ni-C, Metall. Trans. A, 1992, 23(9), p 2431-2435

    Article  Google Scholar 

  25. J.K. Chen, D. Farkas, and W.T. Reynolds, Jr., Atomistic Simulation of an f.c.c/b.c.c Interface in Ni-Cr Alloys, Acta Mater., 1997, 45(11), p 4415-4421

    Article  Google Scholar 

  26. A.A. Bondar, V.A. Maslyuk, T.Y. Velikanova, and A.V. Grytsiv, Phase Equilibria in the Cr-Ni-C System and Their Use for Developing Physicochemical Principles for Design of Hard Alloys Based on Chromium Carbide, Powder Metall. Met. Ceram., 1997, 36(5-6), p 242-252

    Article  Google Scholar 

  27. S. Matthews, Shrouded Plasma Spray of Ni-20Cr Coatings Utilizing Internal Shroud Film Cooling, Surf. Coat. Technol., 2014, 249, p 56-74

    Article  Google Scholar 

  28. L. Lutterotti, Total Pattern Fitting for the Combined Size-Stress-Texture Determination in Thin Film Diffraction, Nuclear Inst. Methods Phys. Res, 2010, 2(268), p 334-340

    Article  Google Scholar 

  29. M.H. Staia, M. Suárez, D. Chicot, J. Lesage, A. Iost, and E.S. Puchi-Cabrera, Cr3C2-NiCr VPS Thermal Spray Coatings as Candidate for Chromium Replacement, Surf. Coat. Technol., 2013, 220, p 225-231

    Article  Google Scholar 

  30. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison-Wesleym Publishing Company, Inc, Reading, 1978

  31. S. Graulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, Crystallography Open Database—An open-access collection of crystal structures, J. Appl. Crystallogr., 2009, 42(4), p 726-729

    Article  Google Scholar 

  32. L. Lutterotti, R. Ceccato, R. Dal Maschio, and E. Pagani, Quantitative Analysis of Silicate Glass in Ceramic Materials by the Rietveld Method, Mater. Sci. Forum, 1998, 278, p 87-92

    Article  Google Scholar 

  33. S. Sampath and H. Herman, Rapid Solidification and Microstructure Development During Plasma Spray Deposition, J. Therm. Spray Technol., 1996, 5(4), p 445-456

    Article  Google Scholar 

  34. G. Espie, A. Denoirjean, P. Fauchais, J.C. Labbe, J. Dubsky, O. Schneeweiss, and K. Volenik, In-Flight Oxidation of Iron Particles Sprayed Using Gas and Water Stabilized Plasma Torch, Surf. Coat. Technol., 2005, 195, p 17-28

    Article  Google Scholar 

  35. J.R. Fincke, W.D. Swank, and D.C. Haggard, Entrainment and demixing in subsonic argon/helium thermal plasma jets, Proceedings of the 1993 National Thermal Spray Conference, 1993, p. 49-54

  36. R.A. Neiser, M.F. Smith, and R.C. Dykhuizen, Oxidation in Wire HVOF-Sprayed Steel, J. Therm. Spray Technol., 1998, 7(4), p 537-545

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support of Associate Professor Brian Gabbitas and the University of Waikato for their collaboration in the development and manufacture of the shrouds and for allowing their use in this work. The assistance of Holster Engineering in performing the spray trials is sincerely appreciated. The support in the preparation and analysis of the coatings provided by the Department of Chemical and Materials Engineering at the University of Auckland is also gratefully appreciated. Funding for this work was provided by the Marsden Fund Council from New Zealand Government funding, administered by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Matthews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, S. Compositional Development as a Function of Spray Distance in Unshrouded/Shrouded Plasma-Sprayed Cr3C2-NiCr Coatings. J Therm Spray Tech 24, 515–533 (2015). https://doi.org/10.1007/s11666-014-0212-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0212-0

Keywords

Navigation