Skip to main content

Advertisement

Log in

Influence of Residual Stress on Mechanical and Tribology Behaviors of Calcium-Phosphate Coating on Commercially Pure Titanium via Integrated Electrospinning and Rapid Heating and Cooling Process

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study focuses on the role of residual stress in the tribological behavior of calcium-phosphate (CaP) coating on titanium (Ti) substrate. The CaP coating was applied using an integrated electrospinning and rapid heating and cooling (EMRHC) process. The residual stress over half and full done EMRHC process was measured by x-ray method. The substrate and coatings were characterized using a field emission scanning electron microscope equipped with the energy-dispersive spectroscope, Vicker's microhardness, atomic force microscopy, and x-ray diffractometer techniques. It was found that the preliminary hydroxyapatite on the Ti substrate was exchanged with α-TCP, CaO, TiO2, CaTiO3, and Ti5P3 over the EMRHC process. The results also showed that the tensile + 591 ± 89 and compressive − 189 ± 42 MPa residual stress remained on the surface over the half and full done EMRHC process, respectively. The hardness, Young module, and ultimate tensile strength of both samples were enhanced significantly by the EMRHC process. The tribology of samples was comprehensibly evaluated in a dry and simulated body fluid solution. The CaP coating prepared by the full-EMRHC process showed the lowest wear rates in comparison with the others due to the compressive residual stress. The coefficient of friction of CPTi coated by EMRHC was significantly reduced when exposed to the SBF solution. Our findings revealed that EMRHC is a promising method to fabricate the Ti implant with higher mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Z. Jing, Q. Cao, and H. Jun, Corrosion, Wear and Biocompatibility of Hydroxyapatite Bio-functionally Graded Coating on Titanium Alloy Surface Prepared by Laser Cladding, Ceram. Int., 2021, 47, p 24641–24651. https://doi.org/10.1016/j.ceramint.2021.05.186

    Article  CAS  Google Scholar 

  2. P.K. Rai, D. Naidu, S.K. Vajpai, B. Sharma, K. Ameyama, and K. Mondal, Effect of Cold Rolling and Heat Treatment on Corrosion and Wear Behavior of β-Titanium Ti-25Nb-25Zr Alloy, J. Mater. Eng. Perform., 2021, 30, p 4174–4182. https://doi.org/10.1007/s11665-021-05739-8

    Article  CAS  Google Scholar 

  3. Y. Zhang, S. Luo, Q. Wang, and C. Seshadri Ramachandran, Effect of Hydrothermal Treatment on the Surface Characteristics and Bioactivity of HAP based MAO Coating on Ti-6Al-4V Alloy, Surf. Coat. Technol., 2023, 464, p 129566. https://doi.org/10.1016/j.surfcoat.2023.129566

    Article  CAS  Google Scholar 

  4. S. Hussain, Z.A. Shah, K. Sabiruddin, and A.K. Keshri, Characterization and Tribological Behaviour of Indian Clam Seashell-derived Hydroxyapatite Coating Applied on Titanium Alloy by Plasma Spray Technique, J. Mech. Behave. Biomed. Mater., 2023, 137, p 105550. https://doi.org/10.1016/j.jmbbm.2022.105550

    Article  CAS  Google Scholar 

  5. Z.Y. Zhang, T.Y. Huang, D.J. Zhai, H.B. Wang, K.Q. Feng, and L. Xiang, Study on Strontium Doped Bioactive Coatings on Titanium Alloys Surfaces by Micro-arc Oxidation, Surf. Coat. Technol., 2022, 451, p 129045. https://doi.org/10.1016/j.surfcoat.2022.129045

    Article  CAS  Google Scholar 

  6. M. Madhusmita and N. Arunachalam, Effects of Electrophoretic Deposited Graphene Coating Thickness on the Corrosion and Wear Behaviors of Commercially Pure Titanium, Surf. Coat. Technol., 2022, 450, p 128946. https://doi.org/10.1016/j.surfcoat.2022.128946

    Article  CAS  Google Scholar 

  7. Y. Wu, A.H. Wang, Z. Zhang, H.B. Xia, and Y.N. Wang, Wear Resistance of in Situ Synthesized Titanium Compound Coatings Produced by Laser Alloying Technique, Surf. Coat. Technol., 2014, 258, p 711–715. https://doi.org/10.1016/j.surfcoat.2014.08.012

    Article  CAS  Google Scholar 

  8. M. Kheradmandfard, O.V. Penkov, S.F. Kashani-Bozorg, J.S. Lee, C.L. Kim, M. Khadem, S.W. Cho, A.Z. Hanzaki, and D.E. Kim, Exceptional Improvement in The Wear Resistance of Biomedical β-type Titanium Alloy with the use of a Biocompatible Multilayer Si/DLC Nanocomposite Coating, Ceram. Int., 2022, 48, p 17376–17384. https://doi.org/10.1016/j.ceramint.2022.03.002

    Article  CAS  Google Scholar 

  9. T. Sun, N. Xue, C. Liu, C. Wang, and J. He, Bioactive (Si, O, N)/(Ti, O, N)/Ti Composite Coating on NiTi Shape Memory Alloy for Enhanced Wear and Corrosion Performance, Appl. Surf. Sci., 2015, 356, p 599–609. https://doi.org/10.1016/j.apsusc.2015.07.185

    Article  CAS  Google Scholar 

  10. R.C. Costa, J.G.S. Souza, J.M. Cordeiro, M. Bertolini, E.D. de Avila, R. Landers, E.C. Rangel, C.A. Fortulan, B. Retamal-Valdes, N.C. da Cruz, M. Feres, and V.A.R. Barão, Synthesis of Bioactive Glass-based Coating by Plasma Electrolytic Oxidation: Untangling a New Deposition Pathway Toward Titanium Implant Surfaces, J. Colloid Interface Sci., 2020, 579, p 680–698. https://doi.org/10.1016/j.jcis.2020.06.102

    Article  CAS  PubMed  Google Scholar 

  11. D. Kuczyńska-Zemła, J. Pura, B. Przybyszewski, M. Pisarek, and H. Garbacz, A Comparative Study of Apatite Growth and Adhesion on a Laser-Functionalized Titanium Surface, Tribol. Int., 2023, 182, p 108338. https://doi.org/10.1016/j.triboint.2023.108338

    Article  CAS  Google Scholar 

  12. A. Błoniarz, K. Cholewa-Kowalska, M. Gajewska, B. Grysakowski, and T. Moskalewicz, Electrophoretic Deposition, Microstructure and Selected Properties of Nanocrystalline SnO2/Sr Enriched Bioactive Glass/Chitosan Composite Coatings Titanium, Surf. Coat. Technol., 2020, 450, p 129004. https://doi.org/10.1016/j.surfcoat.2022.129004

    Article  CAS  Google Scholar 

  13. H. Shaygani, S. Seifi, A. Shamloo, M. Golizadeh, S.Y. Rahnamaee, M. Alishiri, and S. Ebrahimi, Novel Bilayer Coating on Gentamicin-loaded Titanium Nanotube for Orthopedic Implants Applications, Int. J. Pharm., 2023, 636, p 122764. https://doi.org/10.1016/j.ijpharm.2023.122764

    Article  CAS  PubMed  Google Scholar 

  14. C. Skjoldebrand, J.L. Tipper, P. Hatto, M. Bryant, and R.M. Hall, Cecilia Persson Current Status and Future Potential of Wear-resistant Coatings and Articulating Surfaces for Hip and Knee Implants, Mater. Today Bio., 2020, 15, p 100270. https://doi.org/10.1016/j.mtbio.2022.100270

    Article  CAS  Google Scholar 

  15. Y. Fang, Simulation and Experiment of Impact Effects of Nanosecond Pulse Laser-Generated Processing Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2021, 30, p 5515–5523. https://doi.org/10.1007/s11665-021-05551-4

    Article  CAS  Google Scholar 

  16. A. Ghailane, E.Y. Maadane, A. Barchid, S. Berchane, S. Badre-Eddine, H. Larhlimi, C.B. Fischer, J. Alami, and M. Makha, Influence of Annealing Temperature on the Microstructure and Hardness of TiN Coatings Deposited by High-Power Impulse Magnetron Sputtering, J. Mater. Eng. Perform., 2022, 31, p 5593–5601. https://doi.org/10.1007/s11665-022-06689-5

    Article  CAS  Google Scholar 

  17. E.Z. Nahum, S. Lugovskoy, A. Lugovskoy, B. Kazanski, and A. Sobolev, The Study of Hydroxyapatite Growth Kinetics on CP e Ti and Ti65Zr Treated by Plasma Electrolytic Oxidation Process, J. Market. Res., 2023, 24, p 2169–2186. https://doi.org/10.1016/j.jmrt.2023.03.128

    Article  CAS  Google Scholar 

  18. O.V. Tkachuk, I.M. Pohrelyuk, R.V. Proskurnyak, J. Morgiel, M. Faryna, and A. Goral, Morphology and Corrosion Resistance of Hydroxyapatite Coatings Formed on Commercially Pure Titanium, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-07910-9

    Article  Google Scholar 

  19. M. Samiksha, R. Gnanamoorthy, and Y. Otsuka, Fretting Wear Characteristics of Suspension Plasma-Sprayed Hydroxyapatite Coating on Titanium Substrate for Orthopedic Applications, J. Mater. Eng. Perform., 2022, 31, p 7290–7301. https://doi.org/10.1007/s11665-022-06753-0

    Article  CAS  Google Scholar 

  20. A. Alcantara-Garcia, A. Garcia-Casas, and A. Jimenez-Morales, Electrochemical study of the synergic effect of phosphorus and cerium additions on a sol-gel coating for Titanium manufactured by powder metallurgy, Prog. Org. Coat., 2018, 124, p 267–274. https://doi.org/10.1016/j.porgcoat.2018.01.026

    Article  CAS  Google Scholar 

  21. U. Rokkala, G. Suresh, and M.R. Ramesh, Comparative Study of Plasma Spray and Friction Stir Processing on Wear Properties of Mg-Zn-Dy Alloy, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08087-x

    Article  Google Scholar 

  22. M. Yadi, H. Esfahani, M. Sheikhi, and M. Mohammadi, CaTiO3/α-TCP Coatings on CP-Ti Prepared via Electrospinning and Pulsed Laser Treatment for in-vitro Bone Tissue Engineering, Surf. Coat. Technol., 2020, 401, p 126256. https://doi.org/10.1016/j.surfcoat.2020.126256

    Article  CAS  Google Scholar 

  23. R. Gorejov, R. Oriňaková, Z.O. Králová, T. Sopčák, I. Šišoláková, M. Schnitzer, M. Kohan, and R. Hudák, Electrochemical Deposition of a Hydroxyapatite Layer onto the Surface of Porous Additively Manufactured Ti6Al4V Scaffolds, Surf. Coat. Technol., 2023, 455(25), p 129207. https://doi.org/10.1016/j.surfcoat.2022.129207

    Article  CAS  Google Scholar 

  24. H. Esfahani, R. Jose, and S. Ramakrishna, Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications, Materials, 2017, 10(11), p 1238. https://doi.org/10.3390/ma10111238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Esfahani, E. Salahi, A. Tayebifard, M.R. Rahimipour, and M. Keyanpour-Rad, Influence of Zinc Incorporation on Microstructure of Hydroxyapatite to Characterize the Effect of pH and Calcination Temperatures, J. Asian Ceramic Soc., 2014, 2, p 248–252. https://doi.org/10.1016/j.jascer.2014.05.001

    Article  Google Scholar 

  26. H. Esfahani, M. Darvishghanbar, and B. Farshid, Enhanced Bone Regeneration of Zirconia-toughened Alumina Nanocomposites Using PA6/HA Nanofiber Coating via Electrospinning, J. Mater. Res., 2018, 33(24), p 4287–4295. https://doi.org/10.1557/jmr.2018.391

    Article  CAS  Google Scholar 

  27. V. Rattan, T.S. Sidhu, and M. Mittal, Wear Studies on Plasma-Sprayed Pure and Reinforced Hydroxyapatite Coatings, Mater. Today Proc., 2022, 60, p 1731–1735. https://doi.org/10.1016/j.matpr.2021.12.306

    Article  CAS  Google Scholar 

  28. F. Musharavati, F. Jaber, M. Nasor, M. Sarraf, E.Z. Nezhad, K. Uzun, Y. Ma, S. Bae, R. Singh, and M.E. Chowdhury, Micromechanical Properties of Hydroxyapatite Nanocomposites Reinforced with CNTs and ZrO2, Ceram. Int., 2023, 49(5), p 7466–7475. https://doi.org/10.1016/j.ceramint.2022.10.218

    Article  CAS  Google Scholar 

  29. M. Yadi, H. Esfahani, A. Nourian, S.H. Navard, and A. Fattahalhosseini, Surface Modification of CP-Ti by Calcium-Phosphate via an Integrated Electrospinning and Rapid Heating and Cooling (EMRHC) process: Essential in-vitro Studies for Bone Regeneration, Surf. Int., 2021, 27, p 101480. https://doi.org/10.1016/j.surfin.2021.101480

    Article  CAS  Google Scholar 

  30. V. Baranauskas, H.J. Ceragioli, A.C. Peterlevitz, and M. Fontana, Low Residual Stress Diamond Coatings on Titanium, Surf. Coat. Technol., 2005, 200, p 2343–2347. https://doi.org/10.1016/j.surfcoat.2005.04.020

    Article  CAS  Google Scholar 

  31. Y.C. Yang, E. Chang, B.H. Hwang, and S.Y. Lee, Biaxial Residual Stress States of Plasma-sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate, Biomaterials, 2000, 21, p 1327–1337.

    Article  CAS  PubMed  Google Scholar 

  32. C.L. Chang, J.I. Jao, W.Y. Ho, and D.Y. Wang, Effects of Titanium-Implanted Pre-Treatments on the Residual Stress of TiN Coatings on High-speed Steel Substrates, Surf. Coat. Technol., 2007, 201, p 6702–6706. https://doi.org/10.1016/j.surfcoat.2006.09.035

    Article  CAS  Google Scholar 

  33. A.R. Nimkerdphol, Y. Otsuka, and Y. Mutoh, Effect of Dissolution/precipitation on the Residual Stress Redistribution of Plasma-sprayed Hydroxyapatite Coating on Titanium Substrate in Simulated Body Fluid (SBF), J. Mech. Behav. Biomed. Mater., 2014, 36, p 98–108. https://doi.org/10.1016/j.jmbbm.2014.04.007

    Article  CAS  Google Scholar 

  34. Y.C. Yang and E. Chang, Measurements of Residual Stresses in Plasma-sprayed Hydroxyapatite Coatings on Titanium Alloy, Surf. Coat. Technol., 2005, 190, p 122–131. https://doi.org/10.1016/j.surfcoat.2004.02.038

    Article  CAS  Google Scholar 

  35. C.H. Huang and M. Yoshimura, Biocompatible Hydroxyapatite Ceramic Coating on Titanium Alloys by Electrochemical Methods via Growing Integration Layers [GIL] Strategy: A Review, Ceramics Int., 2023 https://doi.org/10.1016/j.ceramint.2022.12.248

    Article  Google Scholar 

  36. A. Umapathi and S. Swaroop, Measurement of Residual Stresses in Titanium Alloys using Synchrotron Radiation, Measurement, 2019, 140, p 518–525. https://doi.org/10.1016/j.measurement.2019.04.021

    Article  Google Scholar 

  37. V. Koshuro, E. Osipova, O. Markelova, M. Fomina, A. Zakharevich, S. Pichkhidze, and A. Fomin, Titanium Oxide Coatings Formed by Plasma Spraying Followed by Induction Heat Treatment, Ceramics Int., 2023, 49, p 2034–2043. https://doi.org/10.1016/j.ceramint.2022.09.169

    Article  CAS  Google Scholar 

  38. S. Park, J. Choi, S. Mondal, T.M.T. Vo, V.H. Pham, H. Lee, S.Y. Nam, C.-S. Kim, and O. Junghwan, The Impact of Cu(II) Ions Doping in Nanostructured Hydroxyapatite Powder: A Finite Element Modelling Study for Physico-mechanical and Biological Property Evaluation, Adv. Powder Technol., 2022, 33(2), p 103405. https://doi.org/10.1016/j.apt.2021.103405

    Article  CAS  Google Scholar 

  39. A. Ebrahimi, H. Esfahani, A. Fattah-alhosseini, and O. Imantalab, Electrochemical Properties of Commercially Pure Ti with TiB/TiB2 Coatings in Hanks Balanced Salt Solution, J. Mater. Eng. Perform., 2019, 28, p 1456–1468. https://doi.org/10.1007/s11665-019-03930-6

    Article  CAS  Google Scholar 

  40. T. Kokubo and H. Takadama, How useful is SBF in Predicting in vivo Bone Bioactivity?, Biomaterials, 2006, 27(15), p 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  41. Cullity, Bernard Dennis. Elements of x-ray Diffraction. Addison-Wesley Publishing, (1956) Chapter 17.

  42. S. Panda, B. Prasad Behera, S. Kumar Bhutia, C. Kumar Biswas, and S. Paul, Rare Transition Metal Doped Hydroxyapatite Coating Prepared via Microwave Irradiation Improved Corrosion Resistance, Biocompatibility and Anti-biofilm Property of Titanium Alloy, J. Alloys Compd., 2022, 918, p 165662. https://doi.org/10.1016/j.jallcom.2022.165662

    Article  CAS  Google Scholar 

  43. H. Shi, X. Wu, S. Sun, C. Wang, Z. Vangelatos, A. Ash-Shakoor, C.P. Grigoropoulos, P.T. Mather, J.H. Henderson, and Z. Ma, Profiling the Responsiveness of Focal Adhesions of Human Cardiomyocytes to Extracellular Dynamic Nano-topography, Bioactive Mater., 2022, 10, p 367–377. https://doi.org/10.1016/j.bioactmat.2021.08.028

    Article  CAS  Google Scholar 

  44. Q. Zan, C. Wang, L. Dong, P. Cheng, and J. Tian, Effect of Surface Roughness of Chitosan-based Microspheres on Cell Adhesion, Appl. Surf. Sci., 2008, 255(2), p 401–403. https://doi.org/10.1016/j.apsusc.2008.06.074

    Article  CAS  Google Scholar 

  45. S. Balcı and F. Tomu, Catalytic Wet Peroxide Oxidation of Phenol Through Mesoporous Silica-pillared Clays Supported Iron and/or Titanium Incorporated Catalysts, J. Environ. Manag., 2023, 326(Part B), p 116835. https://doi.org/10.1016/j.jenvman.2022.116835

    Article  CAS  Google Scholar 

  46. J.C. Sánchez-López, M. Rodríguez-Albelo, M. Sánchez-Pérez, V. Godinho, C. López-Santos, and Y. Torres, Ti6Al4V Coatings on Titanium Samples by Sputtering Techniques: Microstructural and Mechanical Characterization, J. Alloy. Compd., 2023, 953, p 170018. https://doi.org/10.1016/j.jallcom.2023.170018

    Article  CAS  Google Scholar 

  47. W.O.S. Seeram Ramakrishna, M. Ramalingam, and T.S. Sampath Kumar, Biomaterials A Nano Approach, 1st ed. CRC Press, Florida, 2010.

    Google Scholar 

  48. S. Kumar and A. Kumar Das, Wear Resistance and Hardness Properties of TiB2– Fe Coating Developed on AISI 1020 Steel by Tungsten Inert Gas (TIG) Cladding, Ceramics Int., 2022, 48(20), p 30052–30065. https://doi.org/10.1016/j.ceramint.2022.06.274

    Article  CAS  Google Scholar 

  49. S.P. Chodisetti and B.V.M. Kumar, Tailoring Friction and Wear Properties of Titanium Boride Reinforced Silicon Carbide Composites, Wear, 2023, 526–527, p 204886. https://doi.org/10.1016/j.wear.2023.204886

    Article  CAS  Google Scholar 

  50. A. Shenhar, I. Gotmana, S. Radinb, P. Ducheyne, and E.Y. Gutmanas, Titanium Nitride Coatings on Surgical Titanium Alloys Produced by a Powder Immersion Reaction Assisted Coating Method: Residual Stresses and Fretting Behavior, Surface Coat. Technology, 2000, 126, p 210–218. https://doi.org/10.1016/S0257-8972(00)00524-7

    Article  CAS  Google Scholar 

  51. Y. Fu, H. Du, and Ch.Q. Sun, Interfacial Structure, Residual Stress and Adhesion of Diamond Coatings Deposited on Titanium, Thin Solid Films, 2003, 424, p 107–114. https://doi.org/10.1016/S0040-6090(02)00908-2

    Article  CAS  Google Scholar 

  52. G. Singh, S. Sharma, M. Mittal, G. Singh, J. Singh, L. Changhe, A.M. Khan, S.P. Dwivedi, R.T. Mushtaq, and S. Singh, Impact of Post-heat-treatment on the Surfaceroughness, Residual Stresses, and Micromorphology Characteristics of Plasmasprayed Pure Hydroxyapatite and 7%-Aloxite Reinforced Hydroxyapatite Coatings Deposited on Titanium Alloy-based Biomedical Implants, J. Mater. Res. Technol., 2022, 18, p 1358–1380. https://doi.org/10.1016/j.jmrt.2022.03.065

    Article  CAS  Google Scholar 

  53. R. Singh, S. Schruefer, S. Wilson, J. Gibmeier, and R. Vassen, Influence of Coating Thickness on Residual Stress and Adhesion-strength of Cold-sprayed Inconel 718 Coatings, Surf. Coat. Technol., 2018, 350, p 64–73. https://doi.org/10.1016/j.surfcoat.2018.06.080

    Article  CAS  Google Scholar 

  54. A. Vereschaka, M. Volosova, A. Chigarev, N. Sitnikov, A. Ashmarin, C. Sotova, J. Bublikov, and D. Lytkin, Influence of the Thickness of a Nanolayer Composite Coating on Values of Residual Stress and the Nature of Coating Wear, Coatings, 2020, 10, p 63. https://doi.org/10.3390/coatings10010063

    Article  CAS  Google Scholar 

  55. K. Khlifi, H. Dhiflaoui, Z. Lassaad, and A.B.C. Larbi, Mechanical Characterization of CrN/CrAlN Multilayer Coatings Deposited by Magnetron Sputtering System, J. Mater. Eng. Perform., 2015, 24, p 4077–4082. https://doi.org/10.1007/s11665-015-1692-x

    Article  CAS  Google Scholar 

  56. M. Bielawski, Residual Stress Control in TiN/Si Coatings Deposited by Unbalanced Magnetron Sputtering, Surf. Coat. Technol., 2006, 200, p 3987–3995. https://doi.org/10.1016/j.surfcoat.2005.06.004

    Article  CAS  Google Scholar 

  57. A. Ghasemi and S.A. Sadough Vanini, A Comprehensive Investigation on the Effect of Controlling Parameters of Ultrasonic Peening Treatment on Residual Stress and Surface Roughness: Experiments, Numerical Simulations and Optimization, Surf. Coat. Technol., 2023, 464, p 129515. https://doi.org/10.1016/j.surfcoat.2023.129515

    Article  CAS  Google Scholar 

  58. F. Ahmed, M. Zain-ul-abdein, I.A. Channa, M.K. Yaseen, S.J. Gilani, M.A. Makhdoom, M. Mansoor, U. Shahzad, and M.N.B. Jumah, Effect of Ultrasonic Surface Mechanical Attrition Treatment-Induced Nanograins on the Mechanical Properties and Biocompatibility of Pure Titanium, Materials, 2022, 15, p 5097. https://doi.org/10.3390/ma15155097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. S. Zhao, Y. Wang, L. Peng, Y.X. Zhang, R. Ran, and G. Yuan, Effect of Annealing Temperature on Microstructure and Mechanical Properties of Cold-rolled Commercially Pure Titanium Sheets, Trans. Nonferrous Metals Soc. China, 2022, 32(8), p 2587–2597. https://doi.org/10.1016/S1003-6326(22)65968-5

    Article  CAS  Google Scholar 

  60. R. Liu, S. Yuan, N. Lin, Z. Liu, Y. Yu, Z. Wang, Q. Zeng, W. Chen, L. Tian, L. Qin, B. Li, H. Zhang, Z. Wang, B. Tang, and Y. Wu, Tailoring Tribological Performance of Pure Titanium by a Duplex Treatment of Laser Surface Texturing-Thermal Oxidation, J. Mater. Eng. Perform., 2020, 29, p 4047–4062. https://doi.org/10.1007/s11665-020-04875-x

    Article  CAS  Google Scholar 

  61. A.K. Pandey, A. Kumar, R. Kumar, R.K. Gautam, and C.K. Behera, Tribological Performance of SS 316L, Commercially Pure Titanium, and Ti6Al4V in Different Solutions for Biomedical Applications, Mater. Today Proc., 2023, 78(4), p A1–A8. https://doi.org/10.1016/j.matpr.2023.03.736

    Article  CAS  Google Scholar 

  62. S. Wang, Q. An, W. Liu, R. Zhang, Z. Ma, L. Huang, and L. Geng, Towards Strength-ductility Enhancement of Titanium Matrix Composites through Heterogeneous Grain Structured Ti Matrix Design, J. Alloy. Compd., 2022, 927, p 167022. https://doi.org/10.1016/j.jallcom.2022.167022

    Article  CAS  Google Scholar 

  63. S. Bajda, Y. Liu, R. Tosi, K. Cholewa-Kowalska, M. Krzyzanowski, M. Dziadek, M. Kopyscianski, S. Dymek, A.V. Polyakov, I.P. Semenova, and T. Tokarski, Laser Cladding of Bioactive Glass Coating on Pure Titanium Substrate with Highly Refined Grain Structure, J. Mech. Behav. Biomed. Mater., 2021, 119, p 104519. https://doi.org/10.1016/j.jmbbm.2021.104519

    Article  CAS  PubMed  Google Scholar 

  64. L. Morejón-Alonso, C. Mochales, L. Nascimento, and W.D. Müller, Electrochemical Deposition of Sr and Sr/Mg-co-substituted Hydroxyapatite on Ti-40Nb Alloy, Mater. Lett., 2019, 248, p 65–68. https://doi.org/10.1016/j.matlet.2019.03.141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KSH was involved in writing—original draft preparation, formal analysis, and investigation. MY took part in writing—original draft preparation, formal analysis, and investigation. HE contributed to conceptualization, writing—original draft preparation, validation, writing—review and editing, and supervision.

Corresponding author

Correspondence to Hamid Esfahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical issue of the Journal of Materials Engineering and Performance on Residual Stress Analysis: Measurement, Effects, and Control. The issue was organized by Rajan Bhambroo, Tenneco, Inc.; Lesley Frame, University of Connecticut; Andrew Payzant, Oak Ridge National Laboratory; and James Pineault, Proto Manufacturing on behalf of the ASM Residual Stress Technical Committee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamedani, K.S., Yadi, M. & Esfahani, H. Influence of Residual Stress on Mechanical and Tribology Behaviors of Calcium-Phosphate Coating on Commercially Pure Titanium via Integrated Electrospinning and Rapid Heating and Cooling Process. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09534-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09534-z

Keywords

Navigation