Skip to main content

Advertisement

Log in

Quasi-static and Dynamic Compression of Aluminum Foam at Different Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper focused on the quasi-static (strain rate of ~ 10−3 s−1) and dynamic compression (strain rate of ~ 102 s−1) behavior of closed-cell AlSi alloy foam at 25, 300, 420 and 560  °C. Quasi-static and dynamic stress–strain relations as well as deformation modes of the foam at different test temperatures were investigated. The results showed that as the test temperature increased, the compressive strength decreased both under quasi-static and dynamic loading. Compressive strength of the foam showed strong strain-rate sensitivity, exhibiting a maximum increase from 20.60 MPa at ~ 10−3 s−1 to 37.27 MPa at ~ 500 s−1 at 25 °C, from 2.99 MPa at ~ 10−3 s−1 to 10.49 MPa at ~ 500 s−1 at 560 °C. At similar strain rate of ~ 500 s−1 as an example, DIF (dynamic increase factor) showed a maximum increase from 1.81 at 25 °C to 3.50 at 560 °C, indicating that the strain-rate sensitivity of compressive strength increased with increase in temperature. Deformation modes of the foam under quasi-static compression revealed a variation from brittle to ductile as temperature increased, cell wall/edges showed brittle fracture at 25 and 300 °C and a combination of brittle fracture and plastic bending at 420 and 560 °C. The foam under dynamic compression showed evident wedge-shaped shear failure at all the temperatures tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X.L. Liang, H.J. Luo, Y.L. Mu, L.L. Wu, and H. Lin, Experimental Study on Stress Attenuation in Aluminum Foam Core Sandwich Panels with High-Velocity Impact, Mater. Lett., 2017, 203, p 100–102

    Article  Google Scholar 

  2. L.A. Kumaraswamidhas, D.K. Rajak, and S. Das, An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube With Al Alloy Foam Reinforced with SiC Particles, J. Mater. Eng. Perform., 2016, 25, p 3430–3438

    Article  Google Scholar 

  3. B.Y. Zhang, Y.F. Lin, S. Li, D.X. Zhai, and G.H. Wu, Quasi-Static and High Strain Rates Compressive Behavior of Al Matrix Syntactic Foams, Compos. Part B, 2016, 98, p 288–296

    Article  Google Scholar 

  4. V.C. Shunmugasamy and B. Mansoor, Compressive Behavior of a Rolled Open-Cell Aluminum Foam, Mater. Sci. Eng., A, 2018, 715, p 281–294

    Article  Google Scholar 

  5. V.S. Deshpande and N.A. Fleck, High Strain Rate Compressive Behavior of Aluminum Alloy Foams, Int. J. Impact Eng, 2000, 24, p 277–298

    Article  Google Scholar 

  6. K. Myers, B. Katona, P. Cortes, and I.N. Orbulov, Quasi-Static and High Strain Rate Response of Aluminum Matrix Syntactic Foams Under Compression, Compos Part A, 2015, 79, p 82–91

    Article  Google Scholar 

  7. Z.H. Wang, H.W. Ma, L.M. Zhao, and G.T. Yang, Studies on the Dynamic Compressive Properties of Open-Cell Aluminum Alloy Foams, Scripta Mater., 2006, 54, p 83–87

    Article  Google Scholar 

  8. Y. Feng, Z.G. Zhu, F.Q. Zu, S.S. Hu, and Y. Pan, Strain Rate Effects on the Compressive Property and the Energy-Absorbing Capacity of Aluminum Alloy Foams, Mater. Charact., 2001, 47, p 417–422

    Article  Google Scholar 

  9. J.H. Shen, G.X. Lu, and D. Ruan, Compressive Behavior of Closed-Cell Aluminum Foams at High Strain Rates, Compos. Part. B, 2010, 41, p 678–685

    Article  Google Scholar 

  10. K.A. Dannemann and J.L. Jr., High Strain Rate Compression of Closed-Cell Aluminum Foams, Mater. Sci. Eng., A, 2000, 293, p 157–164

    Article  Google Scholar 

  11. Y.L. Sun, Q.M. Li, T. Lowe, S.A. Mcdonald, and P.J. Withers, Investigation of Strain-Rate Effect on the Compressive Behavior of Closed-Cell Aluminum Foam by 3D Image-Based Modelling, Mater. Des., 2016, 89, p 215–224

    Article  Google Scholar 

  12. A. Paul and U. Ramamurty, Strain Rate Sensitivity of a Closed-Cell Aluminum Foam, Mater. Sci. Eng., A, 2000, 281, p 1–7

    Article  Google Scholar 

  13. I. Irausquín, J.L. Pérez-Castellanos, V. Miranda, and F. Teixeira-Dias, Evaluation of the Effect of the Strain Rate on the Compressive Response of a Closed-Cell Aluminum Foam Using the Split Hopkinson Pressure Bar Test, Mater. Des., 2013, 47, p 698–705

    Article  Google Scholar 

  14. T. Mukai, T. Miyoshi, S. Nakano, H. Somekawa, and K. Higashi, Compressive Response of a Closed-Cell Aluminum Foam at High Strain Rate, Scripta Mater., 2006, 54, p 533–537

    Article  Google Scholar 

  15. S. Pattofatto, I. Elnasri, H. Zhao, H. Tsitsiris, F. Hild, and Y. Girard, Shock Enhancement of Cellular Structures Under Impact Loading: Part I, Experiments, J. Mech. Phys. Solids, 2007, 55, p 2672–2686

    Article  Google Scholar 

  16. S. Das, S. Khanna, and D.P. Mondal, Graphene-Reinforced Aluminum Hybrid Foam: Response to High Strain Rate Deformation, J. Mater. Eng. Perform., 2019, 28, p 526–534

    Article  Google Scholar 

  17. Q. Zhang, Y.F. Lin, H.T. Chi, J. Chang, and G.H. Wu, Quasi-Static and Dynamic Compression Behavior of Glass Cenospheres/5A03 Syntactic Foam and Its Sandwich Structure, Compos. Struct., 2018, 183, p 499–509

    Article  Google Scholar 

  18. M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan, and M. Turner, Mechanical Response and Dynamic Deformation Mechanisms of Closed-Cell Aluminium Alloy Foams Under Dynamic Loading, Int. J. Impact Eng, 2018, 114, p 111–122

    Article  Google Scholar 

  19. X.J. Liu, J.H. Zhang, Q. Fang, H. Wu, and Y.D. Zhang, Response of Closed-Cell Aluminum Foams Under Static and Impact Loading: Experimental and Mesoscopic Numerical Analysis, Int. J. Impact Eng, 2017, 110, p 382–394

    Article  Google Scholar 

  20. M. Roberto, Measurement of Strain Rate Sensitivity of Aluminum Foams for Energy Dissipation, Mech. Sci., 2005, 47, p 26–42

    Article  Google Scholar 

  21. H. Zhao, I. Elnasri, and S. Abdennadher, An Experimental Study on the Behaviour Under Impact Loading of Metallic Cellular Materials, Int. J. Mech. Sci., 2005, 47, p 757–774

    Article  Google Scholar 

  22. P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li, Dynamic Compressive Strength Properties of Aluminium Foams, Part I—Experimental Data and Observations, J. Mech. Phys. Solids, 2005, 53, p 2174–2205

    Article  Google Scholar 

  23. P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li, Dynamic compressive strength properties of aluminium foams, part II—‘shock’ theory and comparison with experimental data and numerical models, J. Mech. Phys. Solids, 2005, 53, p 2206–2230

    Article  Google Scholar 

  24. Z.H. Wang, J.H. Shen, G.X. Lu, and L.M. Zhao, Compressive Behavior of Closed-Cell Aluminum Alloy Foams at Medium Strain Rates, Mater. Sci. Eng., A, 2011, 528, p 2326–2330

    Article  Google Scholar 

  25. Y. Feng, Z.G. Zhu, S.S. Hu, Y. Pan, L.H. He, and T. Ning, Dynamic Compressive Behavior of Aluminum Alloy Foams, J. Mater. Sci., 2001, 20, p 1667–1668

    Google Scholar 

  26. M.S. Aly, Behavior of Closed Cell Aluminum Foams Upon Compressive Testing at Elevated Temperatures: Experimental Results, Mater. Lett., 2007, 61, p 3138–3141

    Article  Google Scholar 

  27. B.A. Gama, T.A. Bogetti, B.K. Fink, C. Yu, T.D. Claar, H.H. Eifert, and J.W.G. Jr., Aluminum Foam Integral Armor: A New Dimension in Armor Design, Compos. Struct., 2001, 52, p 381–395

    Article  Google Scholar 

  28. P.F. Wang, S.L. Xu, Z.B. Li, J.L. Yang, H. Zheng, and S.S. Hu, Temperature Effects on the Mechanical Behavior of Aluminum Foam Under Dynamic Loading, Mater. Sci. Eng., A, 2014, 599, p 174–179

    Article  Google Scholar 

  29. N. Movahedi, E. Linul, and L. Marsavina, The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams, J. Mater. Eng. Perform., 2018, 27, p 99–108

    Article  Google Scholar 

  30. J. Kováčik, L. Orovčík, and J. Jerz, High Temperature Compression of Closed Cell Aluminum Foams, Kovove Mater., 2016, 54, p 429–440

    Google Scholar 

  31. D.P. Mondal, N. Jha, A. Badkul, S. Das, and R. Khedle, High Temperature Compressive Deformation Behavior of Aluminum Syntactic Foam, Mater. Sci. Eng., A, 2012, 534, p 521–529

    Article  Google Scholar 

  32. K.M. Yang, X.D. Yang, E.Z. Liu, C.S. Shi, L.Y. Ma, C.N. He, Q.Y. Li, J.J. Liu, and N.Q. Zhao, Elevated Temperature Compressive Properties and Energy Absorption Response of In-Situ Growth CNT-reinforced Al Composite Foams, Mater. Sci. Eng., A, 2017, 690, p 294–302

    Article  Google Scholar 

  33. M. Hakamada, T. Nomura, Y. Yamada, Y. Chino, Y.Q. Chen, H. Kusuda, and M. Mabuchi, Compressive Deformation Behavior at Elevated Temperatures in a Closed-Cell Aluminum Foam, Mater. Trans., 2004, 46, p 1677–1680

    Article  Google Scholar 

  34. J. Liu, Q. Qu, Y. Liu, R. Li, and B. Liu, Compressive Properties of Al-Si-SiC Composite Foams at Elevated Temperatures, J. Alloy. Compd., 2016, 676, p 239–244

    Article  Google Scholar 

  35. E. Linul, N. Movahedi, and L. Marsavina, The Temperature and Anisotropy Effect on Compressive Behavior of Cylindrical Closed-Cell Aluminum-Alloy Foams, J. Alloy. Compd., 2018, 740, p 1172–1179

    Article  Google Scholar 

  36. E. Linul, L. Marsavina, P. Linul, and J. Kováčik, Cryogenic and High Temperature Compressive Properties of Metal Foam Matrix Composites, Compos. Struct., 2019, 209, p 490–498

    Article  Google Scholar 

  37. D.P. Mondal, N. Jha, A. Badkul, S. Das, and R. Khedle, High Temperature Compressive Deformation Behavior of Aluminum Syntactic Foam, Mater. Sci. Eng., A, 2012, 534, p 521–529

    Article  Google Scholar 

  38. M. Taherishargh, E. Linul, S. Broxtermann, and T. Fiedler, The Mechanical Properties of Expanded Perlite-Aluminum Syntactic Foam at Elevated Temperatures, J. Alloy. Compd., 2018, 737, p 590–596

    Article  Google Scholar 

  39. E. Linul, D. Lell, N. Movahedi, C. Codrean, and T. Fiedler, Compressive Properties of Zinc Syntactic Foams at Elevated Temperatures, Compos Part B, 2019, 167, p 122–134

    Article  Google Scholar 

  40. G.C. Yao, X.M. Zhang, T. Sun, CN Patent 1320710 (2001)

  41. M.I. Idris, T. Vodenitcharova, and M. Hoffman, Mechanical Behavior and Energy Absorption of Closed-Cell Aluminum Foam Panels in Uniaxial Compression, Mater. Sci. Eng., A, 2009, 517, p 37–45

    Article  Google Scholar 

  42. H.X. Wang, Y.C. Li, B. Feng, J.Y. Huang, S. Zhang, and X. Fang, Compressive Properties of PTFE/Al/Ni Composite Under Uniaxial Loading, J. Mater. Eng. Perform., 2017, 26, p 2331–2336

    Article  Google Scholar 

  43. P.F. Wang, Response on Dynamic Mechanical Response of Cellular Metals and Temperature Dependency, 2012, a Dissertation for Doctor’s Degree, University of Science and Technology of China

  44. S. Sahu, M.D. Goel, D.P. Mondal, and S. Das, High Temperature Compressive Deformation Behavior of ZA27-SiC Foam, Mater. Sci. Eng., A, 2014, 607, p 162–172

    Article  Google Scholar 

  45. P. Ponnusamy, S.H. Masood, D. Ruan, S. Palanisamy, and R. Rashid, High Strain Rate Dynamic Behaviour of AlSi12 Alloy Processed by Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2018, 97, p 1023–1035

    Article  Google Scholar 

  46. C. Periasamy, R. Jhaver, and H.V. Tippur, Quasi-Static and Dynamic Compression Response of a Lightweight Interpenetrating Phase Composite Foam, Mater. Sci. Eng., A, 2010, 527, p 2845–2856

    Article  Google Scholar 

  47. Z.Y. Dou, L.T. Jiang, G.H. Wu, Q. Zhang, Z.Y. Xiu, and G.Q. Chen, High Strain Rate Compressive Response of Syntactic Foams: Trends in Mechanical Properties and Failure Mechanisms, Scripta Mater., 2007, 57, p 945–948

    Article  Google Scholar 

  48. N. Gupta, D. Luong, and P. Rohatgi, A Method for Intermediate Strain Rate Compression Testing and Study of Compressive Failure, J. Appl. Phys., 2011, 103512, p 1–7

    Google Scholar 

  49. A. Aldoshan and S. Khanna, Dynamic High Temperature Compression of Carbon Nanotubes Reinforced Aluminum Foams, J. Dyn. Behav. Mater., 2017, 3, p 1–11

    Article  Google Scholar 

  50. H. Zhang, W. Lei, K. Zheng, B.T. Jibrin, and P.G. Totakhil, Research on Compressive Impact Dynamic Behavior and Constitutive Model of Polypropylene Fiber Reinforced Concrete, Constr. Build. Mater., 2018, 187, p 584–595

    Article  Google Scholar 

  51. Z.M. Wu, C.J. Shi, W. He, and D.H. Wang, Static and Dynamic Compressive Properties of Ultra-High Performance Concrete (UHPC) with Hybrid Steel Fiber Reinforcements, Cem. Concrete Compos., 2017, 79, p 148–157

    Article  Google Scholar 

  52. S.F. Dong, B.G. Han, X. Yu, and J.P. Ou, Dynamic Impact Behaviors and Constitutive Model of Super-Fine Stainless Wire Reinforce Reactive Powder Concrete, Constr. Build. Mater., 2018, 184, p 602–616

    Article  Google Scholar 

  53. Y.L. Sun and Q.M. Li, Dynamic Compressive Behavior of Cellular Materials: A Review of Phenomenon, Mechanism and Modelling, Int. J. Impact Eng, 2018, 112, p 74–115

    Article  Google Scholar 

  54. H.J. Yu, Z.Q. Guo, B. Li, G.C. Yao, H.J. Luo, and Y.H. Liu, Research into the Effect of Cell Diameter of Aluminum Foam on its Compressive and Energy Absorption Properties, Mater. Sci. Eng., A, 2017, 454–455, p 542–546

    Google Scholar 

  55. A.E. Markaki and T.W. Clyne, The Effect of Cell Wall Microstructure on the Deformation And Fracture of Aluminum-Based Foams, Acta Mater., 2001, 49, p 1677–1686

    Article  Google Scholar 

  56. P.P. Li, N.V. Nguyen, and H. Hao, Dynamic Compressive Behavior of Mg Foams Manufactured by the Direct Foaming Process, Mater. Des., 2016, 89, p 636–641

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by National Natural Science Foundation of China (Nos. 51874093, 51174060, 51661031), Science and Technology Department of Liaoning Province of China (Nos. 2013223004, 20170540304), Open Fund of State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology) (No. SYSJJ2017-08) and the fundamental research funds for the central universities (N140203004, N170104023). The authors would like to acknowledge these organizations for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Luo, H., Mu, Y. et al. Quasi-static and Dynamic Compression of Aluminum Foam at Different Temperatures. J. of Materi Eng and Perform 28, 4952–4963 (2019). https://doi.org/10.1007/s11665-019-04207-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04207-8

Keywords

Navigation