Skip to main content

Advertisement

Log in

Selective Laser Melted Ti-6Al-4V Alloy after Post-Heat Treatments: Microstructure, Mechanical Properties and Fatigue Behavior

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, an investigation is conducted into the effects of heat treatment (700, 800, 900 and 1000 °C) on the microstructure, mechanical properties and fatigue behavior of Ti-6Al-4V alloy fabricated by selective laser melting (SLM). According to the results of microstructure analysis, compared with the Ti-6Al-4V alloy under the initial SLM condition, the sample shows a completely different microstructure after heat treatment. With the increase in heat treatment temperature, the dominant acicular α' martensite in Ti-6Al-4V alloy is decomposed into fine (α + β) lamellae, and the microstructure is significantly coarsened. When the heat treatment temperature exceeds 800 °C, the heat treatment sample develops a finer (α + β) dual-phase matrix microstructure. As revealed by the test of mechanical properties, the samples heat treatment at 900 °C exhibits higher yield strength, higher tensile strength, finer microstructure and greater elongation at break. To be specific, the tensile strength, yield strength and elongation are 921 Mpa, 819 MPa and 16.1%, respectively. According to the results of high cycle fatigue test, the fatigue performance of SLM Ti-6Al-4V alloy is significantly improved by conducting stress relief heat treatment at 900 °C for 107 cycles, with the fatigue strength reaching 190 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Rezvanian, R. Daza, P.A. Lopez, M. Ramos, D. Gonzaleznieto, M. Elices and J. Perezrigueiro, Enhanced Biological Response of AVS-Functionalized Ti-6Al-4V Alloy Through Covalent Immobilization of Collagen, Sci. Rep., 2018, 8, p 3337. https://doi.org/10.1038/s41598-018-21685-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn and M. Qian, Grain Structure Control During Metal 3D Printing by High-intensity Ultrasound, Nat. Commun., 2020 https://doi.org/10.1038/s41467-019-13874-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Y. Xiong, W. Wang, R. Gao, H. Zhang, L. Dong, J. Qin, B. Wang, W. Jia and X. Li, Fatigue Behavior and Osseointegration of Porous Ti-6Al-4V Scaffolds with Dense Core for Dental Application, Mater. Des., 2020, 195, p 108994. https://doi.org/10.1016/j.matdes.2020.108994

    Article  CAS  Google Scholar 

  4. S. Cao, Q. Hu, A. Huang, Z. Chen, M. Sun, J. Zhang, C. Fu, Q. Jia, C.V.S. Lim, R.R. Boyer, Y. Yang and X. Wu, Static Coarsening Behaviour of Lamellar Microstructure in Selective Laser Melted Ti- 6Al-4V, J. Mater. Sci. Technol., 2019, 35, p 1578–1586. https://doi.org/10.1016/j.jmst.2019.04.008

    Article  CAS  Google Scholar 

  5. L. Zhao, J.G.S. Macías, A. Dolimont, A. Simar and E.R. Lorphèvre, Comparison of Residual Stresses Obtained by the Crack Compliance Method for Parts Produced by Different Metal Additive Manufacturing Techniques and After Friction Stir Processing, Addit. Manuf., 2020, 36, p 101499. https://doi.org/10.1016/j.addma.2020.101499

    Article  CAS  Google Scholar 

  6. X.P. Ren, H.Q. Li, H. Guo, F.L. Shen, C.X. Qin, E.T. Zhao and X.Y. Fang, A Comparative Study on Mechanical Properties of Ti-6Al-4V Alloy Processed by Additive Manufacturing vs. Traditional Processing, Mater. Sci. Eng. A, 2021, 817, p 141384. https://doi.org/10.1016/j.msea.2021.141384

    Article  CAS  Google Scholar 

  7. C.J. Huang, X.C. Yan, L. Zhao, M. Liu, W.Y. Ma, W.B. Wang, J. Soete and A. Simar, Ductilization of Selective Laser Melted Ti-6Al-4V Alloy by Friction Stir Processing, Mater. Sci. Eng. A, 2019, 755, p 85–96. https://doi.org/10.1016/j.msea.2019.03.133

    Article  CAS  Google Scholar 

  8. A. Hemmasian Ettefagh, C. Zeng, S. Guo and J. Raush, Corrosion Behavior of Additively Manufactured Ti-6Al-4V Parts and the Effect of Post Annealing, Addit. Manuf., 2019, 28, p 252–258. https://doi.org/10.1016/j.addma.2019.05.011

    Article  CAS  Google Scholar 

  9. W. Zhang, M. Tong and N.M. Harrison, Scanning Strategies Effect on Temperature, Residual Stress and Deformation by Multi-laser Beam Powder Bed Fusion Manufacturing, Addit. Manuf., 2020, 36, p 101507. https://doi.org/10.1016/j.addma.2020.101507

    Article  CAS  Google Scholar 

  10. M. Asherloo, Z.H. Wu, M.H. Delpazir, E. Ghebreiesus, S. Fryzlewicz, R.B. Jiang, B. Gould, M. Heim, D. Nelson, M. Marucci, M. Paliwal, A.D. Rollett and A. Mostafaei, Laser-beam Powder Bed Fusion of Cost-effective Non-spherical Hydride-dehydride Ti-6Al-4V Alloy, Addit. Manuf., 2022, 56, p 102875. https://doi.org/10.1016/j.addma.2022.102875

    Article  CAS  Google Scholar 

  11. C. Qiu, N.J.E. Adkins and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-melted and of HIPed Laser-melted Ti-6Al-4V, Mater. Sci. Eng. A, 2013, 578, p 230–239. https://doi.org/10.1016/j.msea.2013.04.099

    Article  CAS  Google Scholar 

  12. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach and R. Poprawe, Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium, Acta Mater., 2012, 60(9), p 3849–3860. https://doi.org/10.1016/j.actamat.2012.04.006

    Article  CAS  Google Scholar 

  13. C. Yuan, B. Liu, Y. Liu and Y. Liu, Processing Map and Hot Deformation Behavior of Ta-particle Reinforced TiAl Composite, Trans. Nonferrous Met. Soc. China, 2020, 30, p 657–667. https://doi.org/10.1016/S1003-6326(20)65240-2

    Article  CAS  Google Scholar 

  14. W. Yang, X. He, H. Li, J. Dong, W. Chen, H. Xin and Z. Jin, A Tribological Investigation of SLM Fabricated TC4 Titanium Alloy with Carburization Pre-treatment, Ceram. Int., 2020, 46, p 3043–3050. https://doi.org/10.1016/j.ceramint.2019.10.004

    Article  CAS  Google Scholar 

  15. Q. Yan, B. Chen, N. Kang, X. Lin, S. Lv, K. Kondoh, S. Li and J.S. Li, Comparison Study on Microstructure and Mechanical Properties of Ti-6Al-4V Alloys Fabricated by Powder-based Selective-laser-Melting and Sintering Methods, Mater Charact, 2020, 164, p 110358. https://doi.org/10.1016/j.matchar.2020.110358

    Article  CAS  Google Scholar 

  16. Y. Xu, D. Zhang, Y. Guo, S. Hu, X. Wu and Y. Jiang, Microstructural Tailoring of As-Selective Laser Melted Ti6Al4V Alloy for High Mechanical Properties, J. Alloys Compd., 2020, 816, p 152536. https://doi.org/10.1016/j.jallcom.2019.152536

    Article  CAS  Google Scholar 

  17. W. Sun, Y. Ma, W. Huang, W. Zhang and X. Qian, Effects of Build Direction on Tensile and Fatigue Performance of Selective Laser Melting Ti6Al4V Titanium Alloy, Int. J. Fatigue, 2020, 130, p 105260. https://doi.org/10.1016/j.ijfatigue.2019.105260

    Article  CAS  Google Scholar 

  18. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia and M. Qian, Additive Manufacturing of Strong and Ductile Ti-6Al-4V by Selective Laser Melting via in situ Martensite Decomposition, Acta Mater., 2015, 85, p 74–84. https://doi.org/10.1016/j.actamat.2014.11.028

    Article  CAS  Google Scholar 

  19. H. Ali, L. Ma, H. Ghadbeigi and K. Mumtaz, In-situ Residual Stress Reduction, Martensitic Decomposition and Mechanical Properties Enhancement through High Temperature Powder Bed Pre-heating of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A, 2017, 695, p 211–220. https://doi.org/10.1016/j.msea.2017.04.033

    Article  CAS  Google Scholar 

  20. H. Li, Z. Yang, D. Cai, D. Jia and Y. Zhou, Microstructure Evolution and Mechanical Properties of Selective Laser Melted Bulk-form Titanium Matrix Nanocomposites with Minor B4C Additions, Mater. Des., 2020 https://doi.org/10.1016/j.matdes.2019.108245

    Article  Google Scholar 

  21. B.K. Nagesha, S. Anand Kumar, K. Vinodh, A. Pathania and S. Barad, A Thermo–Mechanical Modelling Approach on the Residual Stress Prediction of SLM Processed HPNGV Aeroengine Part, Mater. Today Proc., 2021, 44, p 4990–4996. https://doi.org/10.1016/j.matpr.2020.12.940

    Article  Google Scholar 

  22. M. Frkan, R. Konecna, G. Nicoletto and L. Kunz, Microstructure and Fatigue Performance of SLM-fabricated Ti6Al4V Alloy After Different Stress-relief Heat Treatments, Transp. Res. Procedia., 2019, 40, p 24–29. https://doi.org/10.1016/j.trpro.2019.07.005

    Article  Google Scholar 

  23. S.G. Chen, Y.D. Zhang, Q. Wu, H.J. Gao, Z.H. Gao and X. Li, Effect of Solid-state Phase Transformation on Residual Stress of Selective Laser Melting Ti-6Al-4V, Mater. Sci. Eng. A, 2021, 819, p 141299. https://doi.org/10.1016/j.msea.2021.141299

    Article  CAS  Google Scholar 

  24. J.W. Pegues, M.A. Melia, R. Puckett, S.R. Whetten, N. Argibay and A.B. Kustas, Exploring Additive Manufacturing as a High-throughput Screening Tool for Multiphase High Entropy Alloys, Addit. Manuf., 2021, 37, p 101598. https://doi.org/10.1016/j.addma.2020.101598

    Article  CAS  Google Scholar 

  25. A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, S. Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R.M. Hosseini, S. Ramakrishna and A.A. Zadpoor, Additive Manufacturing of Ti-6Al-4V Parts Through Laser Metal Deposition (LMD): Process, Microstructure, and Mechanical Properties, J. Alloys Compd., 2019, 804, p 163–191. https://doi.org/10.1016/j.jallcom.2019.04.255

    Article  CAS  Google Scholar 

  26. B. Vrancken, L. Thijs, J.-P. Kruth and J. Van Humbeeck, Microstructure and Mechanical Properties of a Novel β Titanium Metallic Composite by Selective Laser Melting, Acta Mater., 2014, 68, p 150–158. https://doi.org/10.1016/j.actamat.2014.01.018

    Article  CAS  Google Scholar 

  27. L. Emanuelli, A. Molinari, L. Facchini, E. Sbettega, S. Carmignato, M. Bandini and M. Benedetti, Effect of Heat Treatment Temperature and Turning Residual Stresses on the Plain and Notch Fatigue Strength of Ti-6Al-4V Additively Manufactured via Laser Powder Bed Fusion, Int. J. Fatigue, 2022, 162, p 107009. https://doi.org/10.1016/j.ijfatigue.2022.107009

    Article  CAS  Google Scholar 

  28. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard and H.J. Maier, On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance, Int. J. Fatigue, 2013, 48, p 300–307. https://doi.org/10.1016/j.ijfatigue.2012.11.011

    Article  CAS  Google Scholar 

  29. E. Pessard, M. Lavialle, P. Laheurte, P. Didier and M. Brochu, High-cycle Fatigue Behavior of a Laser Powder Bed Fusion Additive Manufactured Ti-6Al-4V Titanium: Effect of Pores and Tested Volume Size, Int. J. Fatigue, 2021, 149, p 106206. https://doi.org/10.1016/j.ijfatigue.2021.106206

    Article  CAS  Google Scholar 

  30. B. Ellyson, M. Brochu and M. Brochu, Characterization of Bending Vibration Fatigue of SLM Fabricated Ti-6Al-4V, Int. J. Fatigue, 2017, 99, p 25–34. https://doi.org/10.1016/j.ijfatigue.2017.02.005

    Article  CAS  Google Scholar 

  31. F. Cao, T. Zhang, M.A. Ryder and D.A. Lados, A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V, JOM, 2018, 70, p 349–357. https://doi.org/10.1007/s11837-017-2728-5

    Article  CAS  Google Scholar 

  32. S.A. Etesami, B. Fotovvati and E. Asadi, Heat Treatment of Ti-6Al-4V Alloy Manufactured by Laser-based Powder-bed Fusion: Process, Microstructures, and Mechanical Properties Correlations, J. Alloys Compd., 2022, 895, p 162618. https://doi.org/10.1016/j.jallcom.2021.162618

    Article  CAS  Google Scholar 

  33. Q. Chao, P.D. Hodgson and H. Beladi, Ultrafine Grain Formation in a Ti-6Al-4V Alloy by Thermomechanical Processing of a Martensitic Microstructure, Metall. Mater. Trans. A, 2014, 45, p 2659–2671. https://doi.org/10.1007/s11661-014-2205-5

    Article  CAS  Google Scholar 

  34. M. Paghandeh, A. Zarei-Hanzaki, H.R. Abedi and Y. Vahidshad, The Enhanced Warm Temperature Ductility of Ti-6Al-4V Alloy Through Strain Induced Martensite Reversion and Recrystallization, Mater. Lett., 2021, 302, p 130405. https://doi.org/10.1016/j.matlet.2021.130405

    Article  CAS  Google Scholar 

  35. N. Jin, Z. Yan, Y. Wang, H. Cheng and H. Zhang, Effects of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Lattice Materials, Int. J. Mech. Sci., 2021, 190, p 106042. https://doi.org/10.1016/j.ijmecsci.2020.106042

    Article  Google Scholar 

  36. H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka and P. Nandwana, Effects of Heat Treatments on Microstructure and Properties of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting (EBM), Mater. Sci. Eng. A, 2017, 685, p 417–428. https://doi.org/10.1016/j.msea.2017.01.019

    Article  CAS  Google Scholar 

  37. D. Agius, K.I. Kourousis, C. Wallbrink and T. Song, Cyclic Plasticity and Microstructure of As-built SLM Ti-6Al-4V: The Effect of Build Orientation, Mater. Sci. Eng. A, 2017, 701, p 85–100. https://doi.org/10.1016/j.msea.2017.06.069

    Article  CAS  Google Scholar 

  38. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck and J.-P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58, p 3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004

    Article  CAS  Google Scholar 

  39. A. Zafari, M.R. Barati and K. Xia, Controlling Martensitic Decomposition During Selective Laser Melting to Achieve Best Ductility in High Strength Ti-6Al-4V, Mater. Sci. Eng. A, 2019, 744, p 445–455. https://doi.org/10.1016/j.msea.2018.12.047

    Article  CAS  Google Scholar 

  40. C. Chang, J. Huang, X. Yan, Q. Li, M. Liu, S. Deng, J. Gardan, R. Bolot, M. Chemkhi and H. Liao, Microstructure and Mechanical Deformation Behavior of Selective Laser Melted Ti6Al4V ELI Alloy Porous Structures, Mater. Lett., 2020, 277, p 128366. https://doi.org/10.1016/j.matlet.2020.128366

    Article  CAS  Google Scholar 

  41. C. Qiu, M.A. Kindi, A.S. Aladawi et al., A Comprehensive Study on Microstructure and Tensile Behaviour of a Selectively Laser Melted Stainless Steel, Sci. Rep., 2018, 8, p 7785. https://doi.org/10.1038/s41598-018-26136-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Haubrich, J. Gussone, P. Barriobero-Vila, P. Kürnsteiner, E.A. Jägle, D. Raabe, N. Schell and G. Requena, The Role of Lattice Defects, Element Partitioning and Intrinsic Heat Effects on the Microstructure in Selective Laser Melted Ti-6Al-4V, Acta Mater., 2019, 167, p 136–148. https://doi.org/10.1016/j.actamat.2019.01.039

    Article  CAS  Google Scholar 

  43. P. Krakhmalev, G. Fredriksson, I. Yadroitsava, N. Kazantseva, A.D. Plessis and I. Yadroitsev, Deformation Behavior and Microstructure of Ti6Al4V Manufactured by SLM, Phys. Procedia, 2016, 83, p 778–788. https://doi.org/10.1016/j.phpro.2016.08.080

    Article  CAS  Google Scholar 

  44. W. Shi Feng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng and S. Yusheng, Effect of Molten Pool Boundaries on the Mechanical Properties of Selective Laser Melting Parts, J. Mater. Process. Technol., 2014, 214, p 2660–2667. https://doi.org/10.1016/j.jmatprotec.2014.06.002

    Article  CAS  Google Scholar 

  45. A. Maenosono, M. Koyama, Y. Tanaka, S. Ri, Q. Wang and H. Noguchi, Crystallographic Selection Rule for the Propagation Mode of Microstructurally Small Fatigue Crack in a Laminated Ti-6Al-4V Alloy: Roles of Basal and Pyramidal Slips, Int. J. Fatigue, 2019, 128, p 105200. https://doi.org/10.1016/j.ijfatigue.2019.105200

    Article  CAS  Google Scholar 

  46. J. Liu, K. Zhang, J. Liu, H. Wang, Y. Yang, L. Yan, X. Tian, Y. Zhu and A. Huang, Investigation of Fatigue Behavior of Laser Powder Bed Fusion Ti-6Al-4V: Roles of Heat Treatment and Microstructure, Int. J. Fatigue, 2023, 176, p 107839. https://doi.org/10.1016/j.ijfatigue.2023.107839

    Article  CAS  Google Scholar 

  47. P. Åkerfeldt, R. Pederson and M.-L. Antti, A Fractographic Study Exploring the Relationship Between the Low Cycle Fatigue and Metallurgical Properties of Laser Metal Wire Deposited Ti-6Al-4V, Int. J. Fatigue, 2016, 87, p 245–256. https://doi.org/10.1016/j.ijfatigue.2016.02.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Class III Peak Discipline of Shanghai—Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing) and China Postdoctoral Science Foundation (2021M7010380) for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

Minghui Wang and Hua Yan helped in conceptualization, data analysis, writing—original draft and methodology. Hua Yan helped in conceptualization, data analysis and methodology. Peilei Zhang helped in data verification and investigation. Qing Hua Lu worked in investigation and methodology. Kaiwei Liu worked in investigation and data analysis.

Corresponding author

Correspondence to Hua Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yan, H., Lu, Q. et al. Selective Laser Melted Ti-6Al-4V Alloy after Post-Heat Treatments: Microstructure, Mechanical Properties and Fatigue Behavior. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09504-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09504-5

Keywords

Navigation