Skip to main content
Log in

Theoretical Modeling of Temperature, Strain Rate and Porosity Dependent Yield Strength of Porous Metallic Material

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Yield strength is one of the most crucial mechanical parameters for porous metal materials. A comprehensive study of the influence of temperature, strain rate, and porosity on yield strength is fundamental to ensuring the safety of materials in service. In the present paper, the individual and combined effects of temperature, strain rate, and porosity on yield strength are carefully examined, and then a coupling term, which can effectively and conveniently describe the coupling effect between temperature and strain rate, is introduced. Subsequently, a new theoretical model for the temperature-strain rate-porosity-dependent yield strength of porous metal materials is established. The model is verified by comparing the experimental results with the model predictions, and good agreement is achieved. Particularly, the temperature term in the model is derived solely from physical meanings and does not involve any fitting parameters. The model requires only a few easily obtainable parameters, and it is applicable over a wide range of temperatures, strain rates, and porosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.S. Aly, Behavior of Closed Cell Aluminium Foams upon Compressive Testing at Elevated Temperatures: Experimental Results, Mater. Lett., 2007, 61(14–15), p 3138. https://doi.org/10.1016/j.matlet.2006.11.046

    Article  CAS  Google Scholar 

  2. M.F. Ashby, A. Evans, N.A. Fleck, and L.J. Gibson, Metal Foams: A Design Guide, Appl. Mech. Rev., 2001, 54(6), p B105–B106. https://doi.org/10.1115/1.1421119

    Article  Google Scholar 

  3. J. Banhart and D. Weaire, On the Road Again: Metal Foams Find Favor, Phys. Today, 2002, 55(7), p 37–42. https://doi.org/10.1063/1.1506749

    Article  CAS  Google Scholar 

  4. N. Movahedi, E. Linul, and L. Marsavina, The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams, J. Mater. Eng. Perform., 2017, 27(1), p 99–108. https://doi.org/10.1007/s11665-017-3098-4

    Article  CAS  Google Scholar 

  5. X. Li, Z. Li, and D. Zhang, 不同温度和应变率下的闭孔泡沫铝压缩力学性能 (Compression Performance of Closed-Cell Aluminium Foam under Different Temperatures and Strain Rates), J. Vib. Shock, 2020, 39(23), p 17–20+29. https://doi.org/10.13465/j.cnki.jvs.2020.23.003. (in Chinese)

    Article  Google Scholar 

  6. S. Gu, T. Lu, and A.G. Evans, On the Design of Two-Dimensional Cellular Metals for Combined Heat Dissipation and Structural Load Capacity, Int. J. Heat Mass Transf., 2001, 44(11), p 2163–2175. https://doi.org/10.1016/s0017-9310(00)00234-9

    Article  Google Scholar 

  7. Y. Kang and J. Zhang, Compressive Behavior of Aluminum Foams at Low and High Strain Rates, in Pacific Rim Conference on Rheology(PRCR4); 20050807-11; Shanghai(CN), 2005.

  8. F. Yi, Z. Zhu, F. Zu, S. Hu, and P. Yi, Strain Rate Effects on the Compressive Property and the Energy-Absorbing Capacity of Aluminum Alloy Foams, Mater Charact, 2001, 47(5), p 417–422. https://doi.org/10.1016/s1044-5803(02)00194-8

    Article  CAS  Google Scholar 

  9. H. Jain, D.P. Mondal, G. Gupta, A. Kothari, R. Kumar, A. Pandey, S. Shiva, and P. Agarwal, Microstructure and High Temperature Compressive Deformation in Lightweight Open Cell Titanium Foam, Manuf. Lett., 2021, 27, p 67–71. https://doi.org/10.1016/j.mfglet.2020.12.007

    Article  Google Scholar 

  10. Z. Xue, H. Fukazawa, and K. Kitazono, Strain Rate Sensitivity of Open-Cell Titanium Foam at Elevated Temperature, Mater. Sci. Eng. A, 2016, 673, p 83–89. https://doi.org/10.1016/j.msea.2016.06.080

    Article  CAS  Google Scholar 

  11. J. Wang, H. Ren, H. Shen, and J. Ning, Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores, Chin. J. High Press. Phys., 2017, 31(04), p 364–372. https://doi.org/10.11858/gywlxb.2017.00.003

    Article  CAS  Google Scholar 

  12. X. Liu, M. Ma, X. Wang, X. Wu, and C. Wen, 开孔泡沫钛力学性质的温度相依性 (Temperature-Dependence of Mechanical Properties of Open-Cell Titanium Foam), Rare Metal Mater. Eng., 2008, 37(2), p 277–280. (in Chinese)

    CAS  Google Scholar 

  13. G.Z. Voyiadjis and F.H. Abed, Effect of Dislocation Density Evolution on the Thermomechanical Response of Metals with Different Crystal Structures at Low and High Strain Rates and Temperatures, Arch. Mech., 2005, 57(4), p 299–343. https://doi.org/10.1117/12.607435

    Article  CAS  Google Scholar 

  14. K. Yuan, X. Yao, R. Wang, and Y. Mo, A Review on Rate-Temperature Coupling Response and Dynamic Constitutive Relation of Metallic Materials, Explos. Shock Waves, 2022 https://doi.org/10.11883/bzycj-2021-0416

    Article  Google Scholar 

  15. G.Z. Voyiadjis and F.H. Abed, A Coupled Temperature and Strain Rate Dependent Yield Function for Dynamic Deformations of BCC Metals, Int. J. Plast., 2006, 22(8), p 1398–1431. https://doi.org/10.1016/j.ijplas.2005.10.005

    Article  CAS  Google Scholar 

  16. P. Wang, S. Xu, Z. Li, J. Yang, H. Zheng, and S. Hu, Temperature Effects on the Mechanical Behavior of Aluminum Foam under Dynamic Loading, Mater. Sci. Eng. A, 2014, 599(2), p 174–179. https://doi.org/10.1016/j.msea.2014.01.076

    Article  CAS  Google Scholar 

  17. J. Zhang, P. Zhang, Q. Gan, and X. Guo, Temperature-Dependence of Open-Cell Nickel Foams Properties, J. Mater. Sci. Lett., 2003, 22(23), p 1701–1703. https://doi.org/10.1023/B:JMSL.0000004653.15071.a0

    Article  CAS  Google Scholar 

  18. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Eng. Fract. Mech., 1983, 21, p 541–548.

    Google Scholar 

  19. D.J. Bammann, Modeling Temperature and Strain Rate Dependent Large Deformations of Metals, Appl. Mech. Rev., 1990, 43(5S), p S312. https://doi.org/10.1115/1.3120834

    Article  Google Scholar 

  20. J. Zhang, Y. Wang, X. Zan, and Y. Wang, The Constitutive Responses of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si Alloy at High Strain Rates and Elevated Temperatures, J. Alloys Compd., 2015, 647, p 97–104. https://doi.org/10.1016/j.jallcom.2015.05.131

    Article  CAS  Google Scholar 

  21. L. Gambirasio and E. Rizzi, An Enhanced Johnson–Cook Strength Model for Splitting Strain Rate and Temperature Effects on Lower Yield Stress and Plastic Flow, Comput. Mater. Sci., 2016, 113, p 231–265. https://doi.org/10.1016/j.commatsci.2015.11.034

    Article  Google Scholar 

  22. P.P. Milella, On the Dependence of the Yield Strength of Metals on Temperature and Strain Rate. The Mechanical Equation of the Solid State, in AIP Conference Proceedings, 2002, p. 642–648.

  23. J. Chen and B. Young, Mechanical Properties of Cold-Formed Steel at Elevated Temperatures, Jpn. J. Real Estate, 2005, 19(2), p 101–106. https://doi.org/10.5736/jares1985.19.2_101

    Article  Google Scholar 

  24. H. Lim, C.C. Battaile, J.D. Carroll, B.L. Boyce, and C.R. Weinberger, A Physically based Model of Temperature and Strain Rate Dependent Yield in BCC Metals: Implementation into Crystal Plasticity, J. Mech. Phys. Solids, 2015, 74, p 80–96. https://doi.org/10.1016/j.jmps.2014.10.003

    Article  CAS  Google Scholar 

  25. W. Li, F. Yang, and D. Fang, The Temperature-Dependent Fracture Strength Model for Ultra-High Temperature Ceramics, Acta Mech. Sin., 2009, 26(2), p 235–239. https://doi.org/10.1007/s10409-009-0326-7

    Article  CAS  Google Scholar 

  26. W. Li, X. Zhang, H. Kou, R. Wang, and D. Fang, Theoretical Prediction of Temperature Dependent Yield Strength for Metallic Materials, Int. J. Mech. Sci., 2016, 105, p 273–278. https://doi.org/10.1016/j.ijmecsci.2015.11.017

    Article  Google Scholar 

  27. J. Ma, W. Li, X. Zhang, H. Kou, J. Shao, P. Geng, Y. Deng, and D. Fang, Tensile Properties and Temperature-Dependent Yield Strength Prediction of GH4033 Wrought Superalloy, Mater. Sci. Eng. A, 2016, 676, p 165–172. https://doi.org/10.1016/j.msea.2016.08.105

    Article  CAS  Google Scholar 

  28. X. Zhang, W. Li, J. Ma, P. Geng, J. Shao, and X. Wu, A Novel Temperature Dependent Yield Strength Model for Metals Considering Precipitation Strengthening and Strain Rate, Comput. Mater. Sci., 2017, 129, p 147–155. https://doi.org/10.1016/j.commatsci.2016.12.005

    Article  CAS  Google Scholar 

  29. P. Perzyna, Fundamental Problems in Viscoplasticity, Adv. Appl. Mech., 1966, 9, p 243–377.

    Article  CAS  Google Scholar 

  30. P.S. Symonds and G.R. Cowper, Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams, Brown Univ, Province, 1957.

    Google Scholar 

  31. J.G. Snedeker, P. Niederer, F.R. Schmidlin, M. Farshad, C.K. Demetropoulos, J.B. Lee, and K.H. Yang, Strain-Rate Dependent Material Properties of the Porcine and Human Kidney Capsule, J. Biomech., 2005, 38(5), p 1011–1021. https://doi.org/10.1016/j.jbiomech.2004.05.036

    Article  CAS  PubMed  Google Scholar 

  32. Y. Kang, X. Yao, R. Wang, and Y. Mo, 金属材料的率-温耦合响应与动态本构关系综述 (A Review on Rate-Temperature Coupling Response and Dynamic Constitutive Relation of Metallic Materials), Explos. Shock Waves, 2022 https://doi.org/10.11883/bzycj-2021-0416. (in Chinese)

    Article  Google Scholar 

  33. C.C. Chou, Y. Zhao, and G.G. Lim, A Constitutive Model for Polyurethane Foams with Strain-Rate and Temperature Effects, SAE Trasn., 1998 https://doi.org/10.4271/980967

    Article  Google Scholar 

  34. J.D. Campbell and W.G. Ferguson, The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel, Phil. Mag., 1970, 21(169), p 63–82. https://doi.org/10.1080/14786437008238397

    Article  CAS  Google Scholar 

  35. C. Tang, J. Zhu, and H. Zhou, Correlation between Yield Stress and Strain Rate for Metallic Materials and Thermal Activation Approach, Acta Metall. Sin., 1995, 31, p 248–253.

    Google Scholar 

  36. P. Geng, W. Li, X. Zhang, J. Shao, Y. Deng, J. Ma, and H. Kou, A New Temperature and Strain Rate Dependent Yielding Model for Iron-based Body-Centered-Cubic Metallic Materials, J. Alloys Compd., 2016, 684, p 116–119. https://doi.org/10.1016/j.jallcom.2016.05.156

    Article  CAS  Google Scholar 

  37. M. Yang, W. Li, P. Dong, Y. Ma, Y. He, Z. Zhao, and L. Chen, Temperature and Strain Rate Sensitivity of Yield Strength of Amorphous Polymers: Characterization and Modeling, Polymer, 2022 https://doi.org/10.1016/j.polymer.2022.124936

    Article  PubMed  PubMed Central  Google Scholar 

  38. N. Tuncer and G. Arslan, Designing Compressive Properties of Titanium Foams, J. Mater. Sci., 2009, 44(6), p 1477–1484. https://doi.org/10.1007/s10853-008-3167-z

    Article  CAS  Google Scholar 

  39. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, The University of Cambridge, Cambridge, 1997.

    Book  Google Scholar 

  40. N. Michailidis, F. Stergioudi, A. Tsouknidas, and E. Pavlidou, Compressive Response of Al-Foams Produced via a Powder Sintering Process based on a Leachable Space-Holder Material, Mater. Sci. Eng. A, 2011, 528(3), p 1662–1667. https://doi.org/10.1016/j.msea.2010.10.088

    Article  CAS  Google Scholar 

  41. S. Fan, T. Zhang, K. Yu, and H. Fang, Compressive Properties and Energy Absorption Characteristics of Open-Cell Nickel Foams, Chin. J. Nonferrous Metals, 2017, 27(1), p 117–124. https://doi.org/10.1016/S1003-6326(17)60013-X

    Article  CAS  Google Scholar 

  42. W. Pabst and E. Gregorová, New Relation for the Porosity Dependence of the Effective Tensile Modulus of Brittle Materials, J. Mater. Sci., 2004, 39(10), p 3501–3503. https://doi.org/10.1023/b:jmsc.0000026961.12735

    Article  CAS  Google Scholar 

  43. Y. Wang, X. Zeng, H. Chen, and X. Yang, Modified Johnson–Cook Constitutive Model of Metallic Materials under a Wide Range of Temperatures and Strain Rates, Results Phys., 2021 https://doi.org/10.1016/j.rinp.2021.104498

    Article  PubMed  PubMed Central  Google Scholar 

  44. K.D.M. Manoj and D.P. Afzal, Mondal, High Temperature Deformation Behavior of Closed cell ZnAl27 Hybrid Foam made Through Stir Casting Technique, Mater. Sci. Eng. A, 2018, 731, p 324–330. https://doi.org/10.1016/j.msea.2018.06.044

    Article  CAS  Google Scholar 

  45. W. Li, H. Kou, X. Zhang, J. Ma, Y. Li, P. Geng, X. Wu, L. Chen, and D. Fang, Temperature-Dependent Elastic Modulus Model for Metallic Bulk Materials, Mech. Mater., 2019 https://doi.org/10.1016/j.mechmat.2019.103194

    Article  Google Scholar 

  46. M.D. Goel, D.P. Mondal, and M.S. Yadav, Effect of Strain Rate and Relative Density on Compressive Deformation Behavior of Aluminum Cenosphere Syntactic Foam, Mater. Sci. Eng. A, 2014 https://doi.org/10.1016/j.msea.2013.10.048

    Article  Google Scholar 

  47. D.P. Mondal, J. Nidhi, and B. Anshull, High Temperature Compressive Deformation Behaviour of Aluminum Syntactic Foam, Mater. Sci. Eng. A, 2012, 534(1), p 521–529. https://doi.org/10.1016/j.msea.2011.12.002

    Article  CAS  Google Scholar 

  48. P. Xue, N. Iqbal, H. Liao, B. Wang, and Y. Li, Experimental Study, on Strain Rate Sensitivity of Ductile Porous Irons, Int. J. Impact Eng, 2012, 48, p 82–86. https://doi.org/10.1016/j.ijimpeng.2011.06.001

    Article  Google Scholar 

  49. X. Li, Z. Li, and D. Zhang, 考虑温度效应的泡沫铝准静态压缩本构模型 (Constitutive Model of Aluminum Foam with Temperature Effect under Quasi-Static Compression), Chin. J. High Press. Phys., 2018, 32(4), p 6. https://doi.org/10.11858/gywlxb.20170642. (in Chinese)

    Article  CAS  Google Scholar 

  50. R.G. Munro, Analytical Representations of Elastic Moduli Data with Simultaneous Dependence on Temperature and Porosity, J. Res. Natl. Inst. Stand. Technol., 2004 https://doi.org/10.6028/jres.109.036

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant Nos. 12002268, 12002223].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Kou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, H., Dou, K., Zhang, X. et al. Theoretical Modeling of Temperature, Strain Rate and Porosity Dependent Yield Strength of Porous Metallic Material. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09489-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09489-1

Keywords

Navigation