Skip to main content
Log in

Microwave Absorption Properties of Flaky Carbonyl Iron @ Fe3O4 Produced by Plasma-Assisted Ball Milling

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, large-diameter flaky carbonyl iron (FCI) and FCI@Fe3O4 composite materials were prepared by employing a simple plasma-assisted ball milling and heat treatment process. Large FCI was obtained, with 30-70 μm diameters and a thickness of 300 nm. The results show that, compared with the original polycrystalline carbonyl iron fiber, FCI exhibited higher wave-absorbing performance. When the matching thickness was 2 mm, FCI showed strong absorption of electromagnetic waves, and the minimum reflection loss reached − 33.5 dB at 11 GHz. When the matching thickness was 1.6 mm, the effective absorbing bandwidth reached 5.3 GHz at a reflection loss of <  − 10 dB. The absorption properties were enhanced further by producing the FCI@Fe3O4 composites, for which the maximum reflection loss reached − 52 dB at 3.8 GHz, with a matching thickness of 4.6 mm. This study demonstrated an effective way to improve the microwave absorbing performance of polycrystalline carbonyl iron at low frequencies while supporting industrial mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.J. Genuis, Fielding a Current Idea: Exploring the Public Health Impact of Electromagnetic Radiation, Publ. Health, 2008, 122(2), p 113–124.

    Article  Google Scholar 

  2. L. Xu, Q.H.M. Max and C. Yawen, Effects of Dielectric Parameters of Human Body on Radiation Characteristics of Ingestible Wireless Device at Operating Frequency of 430 MHz, IEEE Trans. Biomed. Eng., 2009, 569(8), p 2083–2094.

    Article  Google Scholar 

  3. W. Przybył et al., Microwave Absorption Properties of Carbonyl Iron-Based Paint Coatings for Military Applications, Def. Technol., 2023, 22, p 1–9.

    Article  Google Scholar 

  4. L. He et al., Preparation of Reduced Graphene Oxide Coated Flaky Carbonyl Iron Composites and Their Excellent Microwave Absorption Properties, RSC Adv., 2018, 8(6), p 2971–2977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M.S. Kim, H.M. Eui and G.K. Jae, Comparison of the Effects of Particle Shape on Thin FeSiCr Electromagnetic Wave Absorber, J. Magn. Magn. Mater., 2009, 321(6), p 581–585.

    Article  CAS  Google Scholar 

  6. X. Dai et al., Nickel Iron Layered Double Hydroxide Nanostructures Composited with Carbonyl Iron Powder for Microwave Absorption, ACS Appl. Nano Mater., 2023, 6(5), p 3472–3483.

    Article  CAS  Google Scholar 

  7. R.K. Walser, W. Win and P.M. Valanju, Shape-Optimized Ferromagnetic Particles with Maximum Theoretical Microwave Susceptibility, IEEE Trans. Magn., 1998, 34(4), p 1390–1392.

    Article  Google Scholar 

  8. S. Yang et al., Effect of Ball-Milling Process on Microwave Absorption Behaviors of Flaky Carbonyl Iron Powders, Materials, 2023, 16(12), p 4397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Z. Li, et al. Study on the Electromagnetic Properties in Low Frequency of the Mechanical Modified Carbonyl Iron, in 2016 2nd International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE 2016). Atlantis Press (2016)

  10. J. He et al., Investigation on Microwave Dielectric Behavior of Flaky Carbonyl Iron Composites, J. Mater. Sci. Mater. Electron., 2018, 29, p 15112–15118.

    Article  CAS  Google Scholar 

  11. X. Liu et al., High Permeability and Bimodal Resonance Structure of Flaky Soft Magnetic Composite Materials, Chin. Phys. B, 2020, 29(7), p 077506.

    Article  CAS  Google Scholar 

  12. Y. Yin et al., Enhanced High-Frequency Absorption of Anisotropic Fe3O4/Graphene Nanocomposites, Sci. Rep., 2016, 6(1), p 25075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A.T. Pak et al., Hierarchical Porous Fe3O4/RGO Nanocomposite Powders as High Performance Microwave Absorbers, J. Mater. Res. Technol., 2021, 13, p 548–560.

    Article  Google Scholar 

  14. Y. Liu et al., Low-Cost Carbothermal Reduction Preparation of Monodisperse Fe3O4/C core–Shell Nanosheets for Improved Microwave Absorption, ACS Appl. Mater. Interfaces, 2018, 10(19), p 16511–16520.

    Article  CAS  PubMed  Google Scholar 

  15. X. Chen et al., Preparation and Characterization of CIP@ Fe3O4@ PANI Composites, Colloids Surf. A: Physicochem. Eng. Aspects, 2021, 628, p 127410.

    Article  CAS  Google Scholar 

  16. Y. Ding et al., Electromagnetic Wave Absorption in Reduced Graphene Oxide Functionalized with Fe3O4/Fe Nanorings, Nano Res., 2016, 9, p 2018–2025.

    Article  CAS  Google Scholar 

  17. M.Q. Zeng et al., Fabricating Ultrathin Plate-like WC Grains in WC–8Co Hardmetals by Increasing Discharge Intensity During Plasma-Assisted Ball Milling, Met. Mater. Int., 2020, 26, p 1373–1384.

    Article  CAS  Google Scholar 

  18. Z. Dong et al., Plasma Assisted Milling Treatment for Improving Mechanical and Electrical Properties of In-Situ Grown Graphene/Copper Composites, Compos. Commun., 2021, 24, p 100619.

    Article  Google Scholar 

  19. M. Zhu et al., Synergism of Mechanical Milling and Dielectric Barrier Discharge Plasma on the Fabrication of Nano-Powders of Pure Metals and Tungsten Carbide, J. Alloy. Compd., 2009, 478(1–2), p 624–629.

    Article  CAS  Google Scholar 

  20. L.Y. Dai, B. Cao and M. Zhu, Comparison on Refinement of Iron Powder by Ball Milling Assisted by Different External Fields, Acta Metall. Sin. (English Lett.), 2006, 19(6), p 411–417.

    Article  CAS  Google Scholar 

  21. Z. Yang, X. Hou and L. Dai, Low-Temperature Synthesis of Nano-AlN Based on Solid Nitrogen Source by Plasma-Assisted Ball Milling, J. Renew. Mater., 2023, 11(6), p 2941.

    Article  Google Scholar 

  22. Y. Cheng et al., Magnetic and Electromagnetic Properties of Fe3O4/Fe Composites Prepared by a Simple One-Step Ball-Milling, J. Alloys Compd., 2017, 708, p 587–593.

    Article  CAS  Google Scholar 

  23. H. Zhang et al., Growth of Fe3O4 Nanorod Arrays On Graphene Sheets for Application in Electromagnetic Absorption Fields, ChemPhysChem, 2014, 15(11), p 2261–2266.

    Article  CAS  PubMed  Google Scholar 

  24. H. Lv et al., Coin-like α-Fe2O3@CoFe2O4 Core–Shell Composites with Excellent Electromagnetic Absorption Performance, ACS Appl. Mater. Interfaces, 2015, 7(8), p 4744–4750.

    Article  CAS  PubMed  Google Scholar 

  25. C.M. Watts, L. Xianliang and J.P. Willie, Metamaterial Electromagnetic Wave Absorbers, Adv. Mater., 2012, 24(23), p OP98–OP120.

    CAS  PubMed  Google Scholar 

  26. Q. Li et al., Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures, Adv. Sci., 2019, 6(8), p 1801057.

    Article  Google Scholar 

  27. Z. Jia et al., Laminated Microwave Absorbers of A-site Cation Deficiency Perovskite La0.8FeO3 Doped at Hybrid RGO Carbon, Compos. Part B Eng., 2019, 176, p 107246.

    Article  CAS  Google Scholar 

  28. Y. Qing et al., Epoxy-Silicone Filled with Multi-Walled Carbon Nanotubes and Carbonyl Iron Particles as a Microwave Absorber, Carbon, 2010, 48(14), p 4074–4080.

    Article  CAS  Google Scholar 

  29. L. Chang et al., Enhanced Magnetic Properties of Fe-Based Nanocrystalline Composites by Addition of Carbonyl Iron Powders, SN Appl. Sci., 2019, 1, p 1–7.

    Article  CAS  Google Scholar 

  30. J. Wang et al., Combined Use of Lightweight Magnetic Fe3O4-Coated Hollow Glass Spheres and Electrically Conductive Reduced Graphene Oxide in an Epoxy Matrix for Microwave Absorption, J. Magn. Magn. Mater., 2016, 401, p 209–216.

    Article  CAS  Google Scholar 

  31. X. Zhu et al., Covalent Organic Framework-Derived Hollow Core-Shell Fe/Fe3O4@ Porous Carbon Composites with Corrosion Resistance for Lightweight and Efficient Microwave Absorption, Compos. Commun., 2021, 25, p 100731.

    Article  Google Scholar 

  32. B. Zhao et al., Facile Preparation and Enhanced Microwave Absorption Properties of Core–Shell Composite Spheres Composited of Ni Cores and TiO2 Shells, Phys. Chem. Chem. Phys., 2015, 17(14), p 8802–8810.

    Article  CAS  PubMed  Google Scholar 

  33. Z. Ma et al., A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers, Chin. Phys. Lett., 2012, 29(3), p 038401.

    Article  Google Scholar 

  34. P. Liu et al., Rational Construction of Hierarchical Hollow CuS@CoS2 Nanoboxes with Heterogeneous Interfaces for High-Efficiency Microwave Absorption Materials, Compos. Part B Eng., 2020, 192, p 107992.

    Article  CAS  Google Scholar 

  35. F. Wang et al., The Point Defect and Electronic Structure of K Doped LaCo0.9Fe0.1O3 Perovskite with Enhanced Microwave Absorbing Ability, Nano Res., 2022, 15(4), p 3720–3728.

    Article  CAS  Google Scholar 

  36. L. Song et al., Transformation Between Nanosheets and Nanowires Structure in MnO2 upon Providing Co2+ Ions and Applications for Microwave Absorption, Nano Res., 2020, 13, p 95–104.

    Article  CAS  Google Scholar 

  37. C. Gong et al., Defect-Induced Dipole Polarization Engineering of Electromagnetic Wave Absorbers: Insights and Perspectives, Compos. Part B Eng., 2023, 252, p 110479.

    Article  Google Scholar 

  38. S. Maiti et al., Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material through Graphite Nanoplate–MWCNT–Graphite Nanoplate Networking, ACS Appl. Mater. Interfaces, 2013, 5(11), p 4712–4724.

    Article  CAS  PubMed  Google Scholar 

  39. S.S. Kim et al., Complex Permeability and Permittivity and Microwave Absorption of Ferrite-Rubber Composite at X-Band Frequencies, IEEE Trans. Magn., 1991, 27(6), p 5462–5464.

    Article  CAS  Google Scholar 

  40. H.J. Kwon, J.Y. Shin and J.H. Oh, The Microwave Absorbing and Resonance Phenomena of Y-Type Hexagonal Ferrite Microwave Absorbers, J. Appl. Phys., 1994, 75(10), p 6109–6111.

    Article  CAS  Google Scholar 

  41. G. Ma et al., Wave-Transmitting Material to Optimize Impedance Matching and Enhance Microwave Absorption Properties of Flaky Carbonyl Iron Coating, J. Mater. Sci. Mater. Electron., 2020, 31, p 8627–8636.

    Article  CAS  Google Scholar 

  42. Y. Wei et al., Fabrication of TiN/Carbon Nanofibers by Electrospinning and their Electromagnetic Wave Absorption Properties, J. Alloys Compd., 2018, 735, p 1488–1493.

    Article  CAS  Google Scholar 

  43. O. Khani et al., The Structural, Magnetic and Microwave Properties of Spherical and Flake Shaped Carbonyl Iron Particles as Thin Multilayer Microwave Absorbers, J. Magn. Magn. Mater., 2017, 428, p 28–35.

    Article  CAS  Google Scholar 

  44. M. Zhang et al., How to Exhibit the Efficient Electromagnetic Wave Absorbing Performance of RGO Aerogels: Less might be Better, J. Mater. Sci. Mater. Electron., 2018, 29, p 5496–5500.

    Article  CAS  Google Scholar 

  45. S. Xie et al., Three-Dimensional Periodic Structured Absorber for Broadband Electromagnetic Radiation Absorption, Electron. Mater. Lett., 2020, 16, p 340–346.

    Article  CAS  Google Scholar 

  46. Y. Wei et al., Waste Cotton-Derived Magnetic Porous Carbon for High-Efficiency Microwave Absorption, Compos. Commun., 2018, 9, p 70–75.

    Article  Google Scholar 

  47. W. Gu et al., Multifunctional Bulk Hybrid Foam for Infrared Stealth, Thermal Insulation, and Microwave Absorption, ACS Appl. Mater. Interfaces, 2020, 12(25), p 28727–28737.

    Article  CAS  PubMed  Google Scholar 

  48. N. Asefi, S.M. Masoudpanah and M. Hasheminiasari, Microwave-Assisted Solution Combustion Synthesis of BiFeO3 Powders, J. Sol-Gel Sci. Technol., 2018, 86, p 751–759.

    Article  CAS  Google Scholar 

  49. P. Miao et al., Emerging Perovskite Electromagnetic Wave Absorbers from Bi-Metal–Organic Frameworks, Cryst. Grow. Des., 2020, 20(7), p 4818–4826.

    Article  CAS  Google Scholar 

  50. Z. Gao et al., Tunable Microwave Absorbing Property of La x FeO3/C by Introducing A-Site Cation Deficiency, J. Mater. Sci. Mater. Electron., 2019, 30, p 13474–13487.

    Article  CAS  Google Scholar 

  51. Y. Bi et al., Microwave Absorption Enhancement of 2-Dimensional CoZn/C@ MoS2@PPy Composites Derived from Metal-Organic Framework, J. Colloid Interface Sci., 2021, 600, p 209–218.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2023ZYGXZR004). We thank Robert Ireland, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongchen Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, N., Xu, W. et al. Microwave Absorption Properties of Flaky Carbonyl Iron @ Fe3O4 Produced by Plasma-Assisted Ball Milling. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09435-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09435-1

Keywords

Navigation