Skip to main content
Log in

Simultaneous Enhancement of Thermal Conductivity and Mechanical Properties of EZ42 Magnesium Alloy by Ca Microalloying

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigated the influence of Ca microalloying on the microstructure, thermal conductivity, and mechanical properties of the EZ42 magnesium alloy. The results indicated that Ca, Mg, and Zn atoms could form stable submicron Ca2Mg6Zn3 precipitates during the thermal deformation process, effectively inhibiting the growth of dynamic recrystallization grains. The refinement of grain size and the strengthening effect of submicron Ca2Mg6Zn3 precipitates increased the yield strength of the as-extruded EZG420 alloy to 162 MPa. The addition of Ca weakened the basal textures and, coupled with the effect of grain refinement, led to improved plasticity. The precipitation of the Ca2Mg6Zn3 phases reduced the residual solid solution Zn atoms in the matrix, and the Ca2Mg6Zn3 precipitates were incoherent with the matrix. These factors combined gave the as-extruded EZG420 alloy excellent room temperature thermal conductivity, reaching 139.6 W/(m·k). By regulating the precipitation behavior of the microalloying elements, the thermal and mechanical properties of the magnesium alloy were simultaneously improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.B. Li, X.Y. Yang, J.T. Hou, and W.B. Du, A Review on Thermal Conductivity of Magnesium and its Alloys, J. Magnes. Alloy., 2020, 8(1), p 78–90. https://doi.org/10.1016/j.jma.2019.08.002

    Article  CAS  Google Scholar 

  2. L. Zhang, K.K. Deng, K.B. Nie, C.J. Wang, C. Xu, and Q.X. Shi, Achieving Strength-Thermal Conductivity Synergy in Mg bulk System Via Introducing Oriented Graphite Flakes into Mg-Zn-Ca Alloy, Compos. Commun., 2023, 37, 101541. https://doi.org/10.1016/j.coco.2022.101451

    Article  Google Scholar 

  3. L.Y. Feng, X.X. Dong, M.X. Xia, X.Z. Zhu, G. Ji, H.L. Yang, B. Wang, E.A. Nyberg, and S.X. Ji, Development of High Thermal Conductivity, Enhanced Strength and Cost-Effective Die-Cast Mg Alloy Compared with AE44 Alloy, J. Mater. Res. Technol., 2023, 22, p 2955–2966. https://doi.org/10.1016/j.jmrt.2022.12.125

    Article  CAS  Google Scholar 

  4. C.B. Yang, Z. Zhang, X.Y. Jiang, X. Lin, N. Luo, B. Han, and X.L. Zhang, Comparison of the Thermal Conductivity of Sm-Containing AZ31 and ZK30 Alloys, Int. J. Thermophys., 2019, 40(9), p 1–11. https://doi.org/10.1007/s10765-019-2549-6

    Article  CAS  Google Scholar 

  5. J. Peng, L.P. Zhong, Y.J. Wang, J. Yang, Y. Lu, and F.S. Pan, Effect of Ce addition on Thermal Conductivity of Mg-2Zn-1Mn Alloy, J. Alloys Compd., 2015, 639, p 556–562. https://doi.org/10.1016/j.jallcom.2015.03.197

    Article  CAS  Google Scholar 

  6. Y.F. Liu, X.G. Qiao, Z.T. Li, Z.H. Xia, and M.Y. Zheng, Effect of Nano-Precipitation on Thermal Conductivity and Mechanical Properties of Mg-2Mn-xLa Alloys During Hot Extrusion, J. Alloys Compd., 2020, 830, 154570. https://doi.org/10.1016/j.jallcom.2020.154570

    Article  CAS  Google Scholar 

  7. L. Chen, S.L. Lü, W. Guo, J.Y. Li, and S.S. Wu, High Thermal Conductivity of Highly Alloyed Mg-Zn-Cu Alloy and its Mechanism, J. Alloys Compd., 2022, 918, 165614. https://doi.org/10.1016/j.jallcom.2022.165614

    Article  CAS  Google Scholar 

  8. M.X. Wu, J.H. Chen, H.G. Yan, W.J. Xia, B. Su, Y.F. Deng, and Y. Shen, Effect of Ca Addition on the Mechanical Properties and Thermal Conductivity of Mg-2Ga Alloy, Mater. Sci. Eng. A, 2022, 861, 144322. https://doi.org/10.1016/j.msea.2022.144322

    Article  CAS  Google Scholar 

  9. H.Y. Guo, S.H. Liu, L. Huang, D.Q. Wang, Y. Du, and M.Q. Chu, Thermal Conductivity of As-Cast and Annealed Mg-RE Binary Alloys, Metals, 2021, 11(4), p 554. https://doi.org/10.3390/met11040554

    Article  CAS  Google Scholar 

  10. C.Y. Su, D.J. Li, A.A. Luo, R.H. Shi, and X.Q. Zeng, Quantitative Study of Microstructure-Dependent Thermal Conductivity in Mg-4Ce-xAl-0.5Mn Alloys, Metall. Mater. Trans. A, 2019, 50(4), p 1970–1984. https://doi.org/10.1007/s11661-019-05136-w

    Article  CAS  Google Scholar 

  11. D.H. StJohn, M. Easton, and Q. Ma, Controlling the Semisolid Grain Size During Solidification, Solid State Phenom., 2008, 141–143, p 355–360. https://doi.org/10.4028/www.scientific.net/SSP.141-143.355

    Article  Google Scholar 

  12. G.H. Wu, X. Tong, R. Jiang, and W.J. Ding, Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect, Acta Metall SIN, 2022, 58(4), p 385–399. https://doi.org/10.11900/0412.1961.2021.00519

    Article  CAS  Google Scholar 

  13. A. Prasad, L. Yuan, P.D. Lee, and D.H. StJohn, The Interdependence Model of Grain Nucleation: A Numerical Analysis of the Nucleation-Free Zone, Acta Mater., 2013, 61(16), p 5914–5927. https://doi.org/10.1016/j.actamat.2013.06.015

    Article  CAS  Google Scholar 

  14. R.E. Schäublin, M. Becker, M. Cihova, S.S.A. Gerstl, D. Deiana, C. Hébert, S. Pogatscher, P.J. Uggowitzer, and J.F. Löffler, Precipitation in Lean Mg-Zn-Ca alloys, Acta Mater., 2022, 239, 118223. https://doi.org/10.1016/j.actamat.2022.118223

    Article  CAS  Google Scholar 

  15. Y.G. Li, F. Guo, H.S. Cai, Y.W. Wang, and L. Liu, The Effect of (Mg, Zn)12Ce Phase Content on the Microstructure and the Mechanical Properties of Mg-Zn-Ce-Zr Alloy, Materials, 2022, 15(13), p 4420. https://doi.org/10.3390/ma15134420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Y.Y. Jia, Z.H. Cai, Q.H. Fan, and L.F. Ma, Effect of Sn on Hot Deformation Behavior of Mg-Ca-Mn Mg Alloys, Trans. Indian Inst. Met., 2022, 75(7), p 1751–1757. https://doi.org/10.1007/s12666-021-02499-w

    Article  CAS  Google Scholar 

  17. Y.H. Kim, J.H. Kim, H.S. Yoo, and H.T. Son, Analysis of Microstructure and Thermal Conductivity in Mg-Sn-Ca Alloy, J. Nanosci. Nanotechnol., 2016, 16(11), p 11277–11280. https://doi.org/10.1166/jnn.2016.13493

    Article  CAS  Google Scholar 

  18. Ö. Ayer, Effect of Die Parameters on the Grain Size, Mechanical Properties and Fracture Mechanism of Extruded AZ31 Magnesium Alloys, Mater. Sci. Eng. A, 2020, 793, 139887. https://doi.org/10.1016/j.msea.2020.139887

    Article  CAS  Google Scholar 

  19. H.C. Pan, G.W. Qin, Y.M. Huang, Y.P. Ren, X.C. Sha, X.D. Han, Z.Q. Liu, C.F. Li, X.L. Wu, H.W. Che, C. He, L.J. Chai, Y.Z. Wang, and J.F. Nie, Development of Low-Alloyed and Rare-Earth-Free Magnesium Alloys Having Ultra-High Strength, Acta Mater., 2018, 149, p 350–363. https://doi.org/10.1016/j.actamat.2018.03.002

    Article  CAS  Google Scholar 

  20. H.C. Chen, T.C. Xie, Q. Liu, Y.D. Huang, B. Liu, Q. Luo, and Q. Li, Mechanism and Prediction of Aging Time Related Thermal Conductivity Evolution of Mg-Zn Alloys, J. Alloys Compd., 2023, 930, 167392. https://doi.org/10.1016/j.jallcom.2022.167392

    Article  CAS  Google Scholar 

  21. Z. Tong, S.H. Li, X.L. Ruan, and H. Bao, Comprehensive First-Principles Analysis of Phonon Thermal Conductivity and Electron-Phonon Coupling in Different Metals, Phys. Rev. B, 2019, 100, 144306. https://doi.org/10.1103/PhysRevB.100.144306

    Article  CAS  Google Scholar 

  22. Y. Cui, S.H. Li, T. Ying, H. Bao, and X.Q. Zeng, Research on the Thermal Conductivity of Metals Based on First Principles, Acta Metall. Sin., 2021, 57(3), p 375–384. https://doi.org/10.11900/0412.1961.2020.00250

    Article  CAS  Google Scholar 

  23. S. Li, A. Wang, Y. Hu, X. Gu, Z. Tong, and H. Bao, Anomalous Thermal Transport in Metallic Transition-Metal Nitrides Originated from Strong Electron-Phonon Interactions, Mater. Today Phys., 2020, 15, 100256. https://doi.org/10.1016/j.mtphys.2020.100256

    Article  Google Scholar 

  24. Z. Tong and H. Bao, Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations, Int. J. Heat Mass Transf., 2018, 117, p 972–977. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.069

    Article  CAS  Google Scholar 

  25. L.P. Zhong, J. Peng, S. Sun, Y.J. Wang, Y. Lu, and F.S. Pan, Microstructure and Thermal Conductivity of As-Cast and As-Solutionized Mg-Rare Earth Binary Alloys, J. Mater. Sci. Technol., 2017, 33(11), p 1240–1248. https://doi.org/10.1016/j.jmst.2016.08.026

    Article  CAS  Google Scholar 

  26. T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, and S.W. Xu, Thermal Conductivity of As-Cast and As-Extruded Binary Mg-Zn Alloys, J. Alloys Compd., 2015, 621, p 250–255. https://doi.org/10.1016/j.jallcom.2014.09.199

    Article  CAS  Google Scholar 

  27. L.F. Hu, Q.F. Gu, Q. Li, J.Y. Zhang, and G.X. Wu, Effect of Extrusion Temperature on Microstructure, Thermal Conductivity and Mechanical Properties of a Mg-Ce-Zn-Zr Alloy, J. Alloys Compd., 2018, 741, p 1222–1228. https://doi.org/10.1016/j.jallcom.2018.01.203

    Article  CAS  Google Scholar 

  28. C.Y. Su, D.J. Li, A.A. Luo, T. Ying, and X.Q. Zeng, Effect of Solute Atoms and Second Phases on the Thermal Conductivity of Mg-RE Alloys: A Quantitative Study, J. Alloys Compd., 2018, 747, p 431–437. https://doi.org/10.1016/j.jallcom.2018.03.070

    Article  CAS  Google Scholar 

  29. L.P. Zhong, Y.J. Wang, M. Gong, X.W. Zheng, and J. Peng, Effects of Precipitates and its Interface on Thermal Conductivity of Mg-12Gd Alloy During Aging Treatment, Mater Charact, 2018, 138, p 284–288. https://doi.org/10.1016/j.matchar.2018.02.019

    Article  CAS  Google Scholar 

  30. L.P. Zhong and Y.J. Wang, Evolution of Precipitate Orientation and its Effect on Thermal Conductivity of Mg-5Sn Alloy, T. Nonferr. Metal. Soc., 2023, 33(6), p 1701–1714. https://doi.org/10.1016/S1003-6326(23)66215-6

    Article  CAS  Google Scholar 

  31. Y.J. Ban, Y.F. Geng, J.R. Hou, Y. Zhang, M. Zhou, Y.L. Jia, B.H. Tian, Y. Liu, X. Li, and A.A. Volinsky, Properties and Precipitates of the High Strength and Electrical Conductivity Cu-Ni-Co-Si-Cr alloy, J. Mater. Sci. Technol., 2021, 93, p 1–6. https://doi.org/10.1016/j.jmst.2021.03.049

    Article  CAS  Google Scholar 

  32. J. Xu, B. Guan, Y.C. Xin, X.D. Wei, G.J. Huang, C.L. Liu, and Q. Liu, A Weak Texture Dependence of Hall-Petch Relation in a Rare-Earth Containing Magnesium Alloy, J. Mater. Sci. Technol., 2022, 99, p 251–259. https://doi.org/10.1016/j.jmst.2021.04.076

    Article  CAS  Google Scholar 

  33. Y. Cai, L. Wan, Z.H. Guo, C.Y. Sun, D.J. Yang, Q.D. Zhang, and Y.L. Li, Hot Deformation Characteristics of AZ80 Magnesium Alloy: Work Hardening Effect and Processing Parameter Sensitivities, Mater. Sci. Eng. A, 2017, 687, p 113–122. https://doi.org/10.1016/j.msea.2017.01.057

    Article  CAS  Google Scholar 

  34. U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: the FCC case, Prog. Mater. Sci., 2003, 48, p 171–273. https://doi.org/10.1016/s0079-6425(02)00003-8

    Article  CAS  Google Scholar 

  35. S.S. Liu, D.B. Xia, H. Yang, G.S. Huang, F.X. Yang, X.H. Chen, A.T. Tang, B. Jiang, and F.S. Pan, Mechanical properties and deformation mechanism in Mg-Gd alloy laminate with dual-heterostructure grain size and texture, Int. J. Plast., 2022, 157, 103371. https://doi.org/10.1016/j.ijplas.2022.103371

    Article  CAS  Google Scholar 

  36. X. Du, W.B. Du, Z.H. Wang, K. Liu, and S.B. Li, Simultaneously Improved Mechanical and Thermal Properties of Mg-Zn-Zr Alloy Reinforced by Ultra-Low Content of Graphene Nanoplatelets, Appl. Surf. Sci., 2021, 536, 147791. https://doi.org/10.1016/j.apsusc.2020.147791

    Article  CAS  Google Scholar 

  37. Y. Kawamura, K. Ougi, S. Inoue, T. Kiguchi, M. Takafuji, H. Ihara, and D.S. Shih, Advanced Mg-Al-Ca Alloys with Combined Properties of High Thermal Conductivity, High Mech. Strength Non-Flammabil. Mater. Trans., 2022, 63(2), p 118–127. https://doi.org/10.2320/matertrans.MT-M2021195

    Article  CAS  Google Scholar 

  38. L. Zhong, Y. Wang, H. Luo, C. Luo, and J. Peng, Evolution of the Microstructure, Texture and Thermal Conductivity of As-Extruded ZM60 Magnesium Alloy in Pre-Compression, J. Alloys Compd., 2019, 775, p 707–713. https://doi.org/10.1016/j.jallcom.2018.10.203

    Article  CAS  Google Scholar 

  39. C.B. Yang, F.S. Pan, X.H. Chen, N. Luo, B.J. Han, and T.Y. Zhou, Thermal Conductivity and Mechanical Properties of Sm-Containing Mg-Zn-Zr Alloys, Mater. Sci. Technol., 2017, 34(2), p 138–144. https://doi.org/10.1080/02670836.2017.1366707

    Article  CAS  Google Scholar 

  40. Y.X. Zhang, H.H. Kang, H. Nagaumi, and X.Y. Yang, Tracing the Microstructures, Mechanical Properties and Thermal Conductivity of Low-Temperature Extruded MgMn Alloys with Various Cerium Additions, Mater Charact, 2023, 196, 112658. https://doi.org/10.1016/j.matchar.2023.112658

    Article  CAS  Google Scholar 

  41. Y. Feng, J.H. Zhang, P.F. Qin, S.J. Liu, Q. Yang, J. Meng, R.Z. Wu, and J.S. Xie, Characterization of Elevated-Temperature High Strength and Decent Thermal Conductivity Extruded Mg-Er-Y-Zn Alloy Containing Nano-Spaced Stacking Faults, Mater Charact, 2019, 155, 109823. https://doi.org/10.1016/j.matchar.2019.109823

    Article  CAS  Google Scholar 

  42. B.C. Li, L.G. Hou, R.Z. Wu, J.H. Zhang, X.L. Li, M.L. Zhang, A.P. Dong, and B.D. Sun, Microstructure and Thermal Conductivity of Mg-2Zn-Zr Alloy, J. Alloys Compd., 2017, 722, p 772–777. https://doi.org/10.1016/j.jallcom.2017.06.148

    Article  CAS  Google Scholar 

  43. X.F. Zhao, Z.X. Li, W.K. Zhou, D.J. Li, M. Qin, and X.Q. Zeng, Effect of Al Content on Microstructure, Thermal Conductivity, and Mechanical Properties of Mg-La-Al-Mn Alloys, J. Mater., 2021, 36(15), p 3145–3154. https://doi.org/10.1557/s43578-021-00319-x

    Article  CAS  Google Scholar 

  44. H.F. Liu, J. Zuo, T. Nakata, C. Xu, G.S. Wang, H.L. Shi, G.Z. Tang, X.J. Wang, S. Kamado, and L. Geng, Effects of La Addition on the Microstructure, Thermal Conductivity and Mechanical Properties of Mg-3Al-0.3 Mn Alloys, Materials, 2022, 15(3), p 1078. https://doi.org/10.3390/ma15031078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China (No. 2021YFB3701100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Huang, L. et al. Simultaneous Enhancement of Thermal Conductivity and Mechanical Properties of EZ42 Magnesium Alloy by Ca Microalloying. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09429-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09429-z

Keywords

Navigation