Skip to main content
Log in

Analysis of Electrode Tip Angle Variation on Weld Geometry, Distortion, and Hardness in Commercially Pure Titanium Welded Using Pulsed-Gas Tungsten Arc Welding

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Gas tungsten arc welding (GTAW) and its variants are esteemed as economically efficient welding methods for welding titanium alloys in the aerospace and nuclear industries. In the present work, the influence of electrode tip angle on weld geometrical elements, distortion, and hardness was investigated in commercially pure titanium (CP-Ti) sheets welded through pulsed-GTAW. Bead-on-plate (BOP) welding was performed on 2 mm thick CP-Ti sheets using electrode tip angles of 30, 45, 60, 75, and 90°. Defect-free welds were obtained by utilizing an indigenously developed shielding setup assembled with p-GTAW machine. The weld geometrical elements were evaluated using metallographic samples of weldment cross section under the stereomicroscope. The findings revealed that as the electrode tip angle increased from 30 to 60°, weld bead width decreased from 6.84 to 5.32 mm. Additionally, the weld penetration initially increased from 1.59 to 1.75 mm up to 60°, but subsequently decreased to 1.51 mm at 90°. Furthermore, increasing the electrode tip angle led to reduction in weld distortion. Microhardness measurements demonstrated an increase in hardness from the base (141 HV0.2) to the weld region (151 HV0.2), with a slight decrease observed in the HAZ (134 HV0.2). This hardness trend across the weldment remained consistent with each electrode tip angle, and higher hardness was observed using large electrode tip angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley Online Library, New York, 2006.

    Google Scholar 

  2. T.S. Balasubramanian, M. Balakrishnan, and V. Balasubramanian et al., Effect of Welding Processes on Joint Characteristics of Ti-6Al-4V Alloy, Sci. Technol. Weld. Join., 2011, 16(8), p 702–708.

    Article  CAS  Google Scholar 

  3. A. Karpagaraj, N. Siva Shanmugam, and K. Sankaranarayanasamy, Some Studies on Mechanical Properties and Microstructural Characterization of Automated TIG Welding of Thin Commercially Pure Titanium Sheets, Mater. Sci. Eng. A, 2015, 640, p 180–189.

    Article  CAS  Google Scholar 

  4. N. Kashaev, V. Ventzke, and V. Fomichev et al., Effect of Nd:YAG Laser Beam Welding on Weld Morphology and Mechanical Properties of Ti-6Al-4V Butt Joints and T-Joints, Opt. Lasers Eng., 2016, 86, p 172–180.

    Article  Google Scholar 

  5. Q. Yunlian, D. Ju, and H. Quan et al., Electron Beam Welding, Laser Beam Welding and Gas Tungsten Arc Welding of Titanium Sheet, Mater. Sci. Eng. A, 2000, 280(1), p 177–181.

    Article  Google Scholar 

  6. S.K. Sahoo, B. Bishoyi, and U.K. Mohanty et al., Effect of Laser Beam Welding on Microstructure and Mechanical Properties of Commercially Pure Titanium, Trans. Indian Inst. Met., 2017, 70(7), p 1817–1825.

    Article  CAS  Google Scholar 

  7. S.T. Auwal, S. Ramesh, and F. Yusof et al., A Review on Laser Beam Welding of Titanium Alloys, Int. J. Adv. Manuf. Technol., 2018, 97(1–4), p 1071–1098.

    Article  Google Scholar 

  8. F. Gao, Y. Cui, and H. Shi et al., Fracture Toughness of Ti-6Al-4V Titanium Alloy Welded by Keyhole Gas Tungsten Arc Welding Based on High Current, J. Mater. Eng. Perform., 2023, 32(23), p 10556–10566.

    Article  CAS  Google Scholar 

  9. A.R. Pavan, T. Sakthivel, and B. Arivazhagan et al., A Comparative Study on the Microstructural Evolution and Mechanical Behavior of 316LN Stainless Steel Welds Made Using Hot-Wire Tungsten Inert Gas and Activated Tungsten Inert Gas Process, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08881-7

    Article  Google Scholar 

  10. W. Lucas, TIG and Plasma Welding: Process Techniques, Recommended Practices and Applications, Abington Publishing, Nashville, 1990.

    Book  Google Scholar 

  11. A. Iltaf, F.N. Khan, and T. Shehbaz et al., Influence of Filler Material on the Microstructure, Mechanical Properties, and Residual Stresses in Tungsten inert Gas Welded Ti-5Al-2.5Sn Alloy Joints, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2021, 235(8), p 1952–1966.

    CAS  Google Scholar 

  12. K. Anbalagan, S. Ramasubramanian, and C. David et al., Importance of Shielding and Mechanical Characterization of Gtaw on Ti-6AL-4V Alloy Sheet, Weld. Int., 2023, 37(6), p 1–11.

    Article  Google Scholar 

  13. S. Kumar, K.E.K. Vimal, and M.A. Khan et al., A Hybrid Learning Approach for Modelling the Fabrication of Super Duplex Stainless Steel Thin Joints Using GTAW Process, Int. J. Interact. Des. Manuf. (IJIDeM), 2023 https://doi.org/10.1007/s12008-023-01413-6

    Article  Google Scholar 

  14. T.V. da Cunha, Roadmap Proposal for Determining the Variables of Pulsed TIG Welding Process Applied to Welding of Thin Plates, Weld. Int., 2015, 29(5), p 356–362.

    Article  Google Scholar 

  15. M. Darivandpour, R. Dehmolaei, and K. Ranjbar et al., Selecting the Appropriate Filler Metal to Join HSLA-100 Steel by Gas Tungsten Arc Welding Process, J. Mater. Eng. Perform., 2023, 32(23), p 10503–10513.

    Article  CAS  Google Scholar 

  16. N. Liu, Z. Lan, and L. Liu et al., Optimizing 304 Stainless Steel Surface Performance with CoCrFeMoNi High-Entropy Alloy Coating via Gas Tungsten Arc Cladding, J. Mater. Eng. Perform., 2023, 32(20), p 9114–9120.

    Article  CAS  Google Scholar 

  17. S. Lathabai, B.L. Jarvis, and K.J. Barton, Comparison of Keyhole and Conventional Gas Tungsten Arc Welds in Commercially Pure Titanium, Mater. Sci. Eng. A, 2001, 299(1–2), p 81–93.

    Article  Google Scholar 

  18. G. Dak, S.M. Pandey, and C. Pandey, Residual Stress Analysis, Microstructural Characterization, and Mechanical Properties of Tungsten Inert Gas-Welded P92/AISI 304L Dissimilar Steel Joints, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2023, 237(4), p 767–790.

    CAS  Google Scholar 

  19. S. Ukita, K. Kokubo, and T. Masuko, Effects of Electrode Tip Shape and Torch Angle on High-Speed DCEN TIG Welding, Weld. Int., 2002, 16(10), p 778–783.

    Article  Google Scholar 

  20. S. Sundaresan, G.D. Janaki Ram, and R.G. Madhusudhan, Microstructural Refinement of Weld Fusion Zones in αβ Titanium Alloys Using Pulsed Current welding, Mater. Sci. Eng. A, 1999, 262(1–2), p 88–100.

    Article  Google Scholar 

  21. H. Lin and C. Chou, Optimisation of the GTA Welding Process Using the Taguchi Method and a Neural Network, Sci. Technol. Weld. Joining, 2006, 11(1), p 120–126.

    Article  Google Scholar 

  22. D.T. Cicic, C. Rontescu, and V. Savulescu et al., The Processing Method of the Tungsten Electrodes and the Current Type Choice Influence on the Shape of the Welding arc in Tungsten Inert Gas Welding (TIG), IOP Conf. Ser. Mater. Sci. Eng., 2018, 400(2), p 022016. https://doi.org/10.1088/1757-899X/400/2/022016

    Article  Google Scholar 

  23. X. Hong, B. Huang, and T. Li et al., Effects of Welding Speed and Welding Current on the Residual Stress and Deformation of SAF 2507/316L Dissimilar Plasma Arc Welding, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08969-0

    Article  Google Scholar 

  24. M. Goodarzi, R. Choo, and J.M. Toguri, The Effect of the Cathode Tip Angle on the GTAW Arc and Weld Pool: I. Mathematical Model of the Arc, J. Phys. D Appl. Phys., 1997, 30(19), p 2744.

    Article  CAS  Google Scholar 

  25. H.-L. Lin and T.-M. Wu, Effects of Activating Flux on Weld Bead Geometry of Inconel 718 Alloy TIG Welds, Mater. Manuf. Process., 2012, 27(12), p 1457–1461.

    Article  CAS  Google Scholar 

  26. R. Singh and Y. Kumar, Tribological Analysis of Cooling Tank Assisted Hybrid Friction Stir Welded 6061 Aluminium Alloy, Weld. Int., 2023, 37(9), p 507–518.

    Article  Google Scholar 

  27. R. Singh and Y. Kumar, Microstructural Analysis of Cooling Tank-Assisted Hybrid Friction Stir Welded Aluminium Alloys: A Novel Approach, Weld. Int., 2023, 37(8), p 445–456.

    Article  Google Scholar 

  28. R. Singh and Y. Kumar, Effect of Cooling Tank Embedded Fixture Design on the Thermal Analysis of Friction Stir Welded Aluminum Alloy, J. Mater. Eng. Perform., 2023, 32(16), p 7215–7224.

    Article  CAS  Google Scholar 

  29. A. Kumar, M.K. Mahto, and V.S. Rana et al., Investigation of Microstructure Evolution and Mechanical Properties of Gas Tungsten Arc Welded Dissimilar Titanium (CP-Ti/Ti-6Al-4V) Alloys, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2022, 237(5), p 1819–1831. https://doi.org/10.1177/095440892211264

    Article  Google Scholar 

  30. A. Kumar, N. Kumar, and M.K. Mahto et al., Impression Creep Behaviour of Different Zones of Pulsed Gas Tungsten Arc Welded Ti-6Al-4V Alloy, Mater. Today Commun., 2023, 36, p 106722.

    Article  CAS  Google Scholar 

  31. M. Balasubramanian, V. Jayabalan, and V. Balasubramanian, Effect of Process Parameters of Pulsed Current Tungsten Inert Gas Welding on Weld Pool Geometry of Titanium Welds, Acta Metall. Sin. (English Letters), 2010, 23(4), p 312.

    CAS  Google Scholar 

  32. B. Mehdi, R. Badji, and V. Ji et al., Microstructure and Residual Stresses in Ti-6Al-4V Alloy Pulsed and Unpulsed TIG Welds, J. Mater. Process. Technol., 2016, 231, p 441–448.

    Article  CAS  Google Scholar 

  33. K. Herrmann, Hardness Testing: Principles and Applications, ASM International, Novelty, OH, 2011.

    Book  Google Scholar 

  34. G. Mathers, Welding of Titanium and its Alloys–Part 2, TWI Global, Cambridge, 2017, p 2–4

    Google Scholar 

  35. M. Junaid, K. Rahman, and F.N. Khan et al., Comparison of Microstructure, Mechanical Properties, and Residual Stresses in Tungsten Inert Gas, Laser, and Electron Beam Welding of Ti-5Al-2.5Sn Titanium Alloy, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2019, 233(7), p 1336–1351.

    CAS  Google Scholar 

  36. M. Junaid, M.N. Baig, and M. Shamir et al., A comparative Study of Pulsed Laser and Pulsed TIG Welding of Ti-5Al-2.5Sn Titanium Alloy Sheet, J. Mater. Process. Technol., 2017, 242, p 24–38.

    Article  CAS  Google Scholar 

  37. M. Inoue and I. Hirasawa, The Relationship Between Crystal Morphology and XRD Peak Intensity on CaSO4·2H2O, J. Cryst. Growth, 2013, 380, p 169–175.

    Article  CAS  Google Scholar 

  38. M. Junaid, F.N. Khan, and M.R. Mirza et al., Microstructure, Mechanical Properties and Residual Stress Distribution in Pulsed Tungsten Inert Gas Welding of Ti-5Al-2.5 Sn Alloy, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2019, 233(10), p 2030–2044.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Zaheer Khan Yusufzai.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mahto, M.K., Vashista, M. et al. Analysis of Electrode Tip Angle Variation on Weld Geometry, Distortion, and Hardness in Commercially Pure Titanium Welded Using Pulsed-Gas Tungsten Arc Welding. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09387-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09387-6

Keywords

Navigation