Skip to main content

Advertisement

Log in

Microstructure, Mechanical, and Corrosion Properties of Mg-Zn-Ga Alloy after Hot Rolling

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of hot rolling on the structure and mechanical properties of the Mg-2Zn-2Ga (wt.%) alloy has been studied. The original cast alloy plates after heat treatment were subjected to rolling from an initial thickness of 7 mm to a final thickness of 0.3 mm at three temperatures, namely 200 °C, 300 °C, and 400 °C. Optical and scanning electron microscopy, microhardness measurement, tensile testing, and corrosion testing were used to characterize the material. It has been established that during rolling at temperatures of 200 and 400 °C, the structure formation proceeds through the formation of shear bands, and at a temperature of 300 °C it proceeds through the twinning and dynamic recrystallization mechanisms. The highest strength of the alloy was obtained after rolling at 300 or 400 °C to reduction up 94-95%: the yield strength and ultimate tensile strength were 247-264 and 273-305 MPa, respectively, and the elongation was 2-5%. Heat treatment (annealing) of the rolled alloy improves its ductility (relative elongation increases to 9-16%). The corrosion resistance of the alloy was determined by hydrogen evolution corrosion test in Hank’s solution at 37 °C and immersion time of 192 h. The alloy after rolling had a corrosion rate of 0.41 mm/year, but post-rolling heat treatment promotes a decrease in corrosion rate to 0.15-0.28 mm/year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V.D. Belov, A.V. Koltygin, N.A. Belov, and I.V. Plisetskaya, Innovations in Cast Magnesium Alloys, Metallurgist, 2010, 54, p 317. https://doi.org/10.1007/s11015-010-9313-2

    Article  CAS  Google Scholar 

  2. L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals, Nauka, Moscow, 1980, p 192

    Google Scholar 

  3. S. Vujović, J. Desnica, D. Stanišić, I. Ognjanović, M. Stevanovic, and G. Rosic, Applications of Biodegradable Magnesium-Based Materials in Reconstructive Oral and Maxillofacial Surgery: A Review, Molecules, 2022, 27, p 5529. https://doi.org/10.3390/molecules27175529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728. https://doi.org/10.1016/j.biomaterials.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  5. X.N. Gu and Y.F. Zheng, A Review on Magnesium Alloys as Biodegradable Materials, Front. Mater. Sci. Chin., 2010, 4, p 111. https://doi.org/10.1007/s11706-010-0024-1

    Article  Google Scholar 

  6. N.T. Tran, Y.K. Kim, S.Y. Kim, M.H. Lee, and K.B. Lee, Comparative Osteogenesis and Degradation Behavior of Magnesium Implant in Epiphysis and Diaphysis of the Long Bone in the Rat Model, Materials, 2022, 15, p 5630. https://doi.org/10.3390/ma15165630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. P. Rider, Ž.P. Kačarević, A. Elad, D. Rothamel, G. Sauer, F. Bornert, P. Windisch, D. Hangyási, B. Molnar, B. Hesse, M. Assad, and F. Witte, Biodegradation of a Magnesium Alloy Fixation Screw Used in a Guided Bone Regeneration Model in Beagle Dogs, Materials, 2022, 15, p 4111. https://doi.org/10.3390/ma15124111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. N. El Mahallawy, R. Hammouda, M. Shoeib, and A.A. Diaa, Effect of Solution Treatment on the Microstructure, Tensile Properties, and Corrosion Behavior of the Mg-5Sn-2Zn-0.1 Mn Alloy, Mater. Res. Expr., 2018, 5, p 016511. https://doi.org/10.1088/2053-1591/aaa349

    Article  CAS  Google Scholar 

  9. A.A. Komissarov, V.E. Bazhenov, A.V. Li, A.V. Koltygin, V.V. Yushchuk, S.V. Plegunova, D.V. Ten, and Y.B. Sazonov, Mechanical and Corrosion Properties of Hot-Extruded Mg-Zn-Ga Alloys, Russ. Metall., 2023, 202, p 1488. https://doi.org/10.1134/S0036029523100142

    Article  Google Scholar 

  10. W. Huang, J. Chen, H. Yan, and W. Xia, Ga Alloying for Fabricating Magnesium Alloy Sheet with Uniform Microstructure and Excellent Performance, Mater. Lett., 2021, 304, 130607. https://doi.org/10.1016/j.matlet.2021.130607

    Article  CAS  Google Scholar 

  11. Y. Chen, Z. Xu, C. Smith, and J. Sankar, Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants, Acta Biomater., 2014, 10, p 4561. https://doi.org/10.1016/j.actbio.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  12. T. Kraus, S.F. Fischerauer, A.C. Hänzi, P.J. Uggowitzer, J.F. Löffler, and A.M. Weinberg, Magnesium Alloys for Temporary Implants in Osteosynthesis: In vivo Studies of their Degradation and Interaction with Bone, Acta Biomater., 2012, 8, p 1230. https://doi.org/10.1016/j.actbio.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  13. J. She, F.S. Pan, W. Guo, A.T. Tang, Z.Y. Gao, S.Q. Luo, K. Song, Z.W. Yu, and M. Rashad, Effect of High Mn Content on Development of Ultra-Fine Grain Extruded Magnesium Alloy, Mater. Des., 2016, 90, p 7. https://doi.org/10.1016/j.matdes.2015.10.093

    Article  CAS  Google Scholar 

  14. L.B. Tong, X.H. Li, and H.J. Zhang, Effect of Long Period Stacking Ordered Phase on the Microstructure, Texture and Mechanical Properties of Extruded Mg-Y-Zn Alloy, Mater. Sci. Eng. A, 2013, 563, p 177. https://doi.org/10.1016/10.1016/j.msea.2012.10.088

    Article  CAS  Google Scholar 

  15. J.Y. Lee, D.H. Kim, H.K. Lim, and D.H. Kim, Effects of Zn/Y Ratio on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys, Mater. Lett., 2005, 59, p 3801. https://doi.org/10.1016/j.matlet.2005.06.052

    Article  CAS  Google Scholar 

  16. B. Zhang, Y. Wang, L. Geng, and C. Lu, Effects of Calcium on Texture and Mechanical Properties of Hot-Extruded Mg-Zn-Ca Alloys, Mater. Sci. Eng. A, 2012, 539, p 56. https://doi.org/10.1016/j.msea.2012.01.030

    Article  CAS  Google Scholar 

  17. W. Huang, J. Chen, H. Yan, W. Xia, B. Su, and W. Zhu, Effects of Ga Content on Dynamic Recrystallization and Mechanical Properties of High Strain Rate Rolled Mg-Ga Alloys, Met. Mater. Int., 2020, 26, p 747. https://doi.org/10.1007/s12540-019-00358-4

    Article  CAS  Google Scholar 

  18. W. Huang, J. Chen, H. Yan, W. Xia, B. Su, H. Yin, and X. Yan, Microstructure, Texture Modification and Mechanical Anisotropy of High Strain Rate Rolled Mg-Ga Alloy Sheets, J. Mater. Sci., 2020, 55, p 10242. https://doi.org/10.1007/s10853-020-04717-0

    Article  CAS  Google Scholar 

  19. J. He, J. Chen, H. Yan, W. Xia, B. Su, P. Pan, M. Zhang, and J. Hu, Effect of Zn/Ga Ratio on Damping and Thermal Behaviors of Fine-Grained Mg-Zn-Ga Sheets, J. Mater. Eng. Perform., 2022, 31, p 5201. https://doi.org/10.1007/s11665-022-06605-x

    Article  CAS  Google Scholar 

  20. J. Niu, G. Yuan, Y. Liao, L. Mao, J. Zhang, Y. Wang, F. Huang, Y. Jiang, Y. He, and W. Ding, Enhanced Biocorrosion Resistance and Biocompatibility of Degradable Mg-Nd-Zn-Zr Alloy by Brushite Coating, Mater. Sci. Eng. C, 2013, 33(4833), p 10. https://doi.org/10.1016/j.msec.2013.08.008

    Article  CAS  Google Scholar 

  21. H. Naujokat, J.M. Seitz, Y. Açil, T. Damm, I. Möller, A. Gülses, and J. Wiltfang, Osteosynthesis of a Cranio-Osteoplasty with a Biodegradable Magnesium Plate System in Miniature Pigs, Acta Biomater., 2017, 62(434), p 10. https://doi.org/10.1016/j.actbio.2017.08.031

    Article  CAS  Google Scholar 

  22. S.H. Byun, H.K. Lim, K.H. Cheon, S.M. Lee, H.E. Kim, and J.H. Lee, Biodegradable Magnesium Alloy (WE43) in Bone-Fixation Plate and Screw, J. Biomed. Mater. Res., 2020, 108, p 2505. https://doi.org/10.1002/jbm.b.34582

    Article  CAS  Google Scholar 

  23. P. Rider, ŽP. Kačarević, A. Elad, D. Tadic, D. Rothamel, G. Sauer, F. Bornert, P. Windisch, D.B. Hangyási, B. Molnar, E. Bortel, B. Hesse, and F. Witte, Biodegradable Magnesium Barrier Membrane used for Guided Bone Regeneration in Dental Surgery, Bioactive Mater., 2022, 14, p 152. https://doi.org/10.1016/j.bioactmat.2021.11.018

    Article  CAS  Google Scholar 

  24. M. Blašković, I.B. Prpić, D. Blašković, P. Rider, M. Tomas, S. Čandrlić, D.B. Hangyasi, M. Čandrlić, and ŽP. Kačarević, Guided Bone Regeneration Using a Novel Magnesium Membrane: A Literature Review and a Report of Two Cases in Humans, J. Funct. Biomater., 2023, 14, p 307. https://doi.org/10.3390/jfb14060307

    Article  PubMed  PubMed Central  Google Scholar 

  25. V. Bazhenov, A. Koltygin, A. Komissarov, A. Li, V. Bautin, R. Khasenova, A. Anishchenko, A. Seferyan, J. Komissarova, and Y. Estrin, Gallium-Containing Magnesium Alloy for Potential use as Temporary Implants in Osteosynthesis, J. Magnesium Alloys, 2020, 8, p 352. https://doi.org/10.1016/j.jma.2020.02.009

    Article  CAS  Google Scholar 

  26. V.E. Bazhenov, A.V. Li, A.A. Komissarov, A.V. Koltygin, S.A. Tavolzhanskii, V.A. Bautin, O.O. Voropaeva, A.M. Mukhametshina, and A.A. Tokar, Microstructure and Mechanical and Corrosion Properties of Hot-Extruded Mg-Zn-Ca-(Mn) Biodegradable Alloys, J. Magnesium Alloys, 2021, 9, p 1428. https://doi.org/10.1016/j.jma.2020.11.008

    Article  CAS  Google Scholar 

  27. ASTM standard G1–03. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. (2011) ASTM International: West Conshohocken, PA, USA. https://doi.org/10.1520/G0001-03R17E01

  28. V. Bazhenov, A. Koltygin, A. Komissarov, A. Anishchenko, R. Khasenova, J. Komissarova, V. Bautin, A. Seferyan, and B Fozilov, Microstructure, Mechanical and Corrosion Properties of Biodegradable Mg-Ga-Zn-X (X = Ca, Y, Nd) Alloys, In: Proceedings of the 27th Anniversary International Conference on Metallurgy and Materials; Brno, Czech Republic, hold on 23-25, May, 2018; TANGER Ltd.: Ostrava, Czech Republic, 2018; pp. 1375–1380

  29. N.T. Kirkland, N. Birbilis, and M.P. Staiger, Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review Of Current Methodologies and their Limitations, Acta Biomater., 2012, 8, p 925. https://doi.org/10.1016/j.actbio.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  30. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130. https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  CAS  Google Scholar 

  31. S.O. Rogachev, V.E. Bazhenov, A.A. Komissarov, A.V. Li, D.V. Ten, V.V. Yushchuk, A.Y. Drobyshev, and K.S. Shin, Effect of Hot Rolling on Structure and Mechanical Properties of Mg–Y–Zn–Mn Alloys, Metals, 2023, 13, p 223. https://doi.org/10.3390/met13020223

    Article  CAS  Google Scholar 

  32. V. Bazhenov, A. Lyskovich, A. Li, V. Bautin, A. Komissarov, A. Koltygin, A. Bazlov, A. Tokar, D. Ten, and A. Mukhametshina, Effect of Heat Treatment on the Mechanical and Corrosion Properties of Mg–Zn–Ga Biodegradable Mg Alloys, Materials, 2021, 14, p 7847. https://doi.org/10.3390/ma14247847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. V. Bazhenov, A. Li, A. Iliasov, V. Bautin, S. Plegunova, A. Koltygin, A. Komissarov, M. Abakumov, N. Redko, and K.S. Shin, Corrosion Behavior and Biocompatibility of Hot-Extruded Mg–Zn–Ga–(Y) Biodegradable Alloys, J. Funct. Biomater., 2022, 13, p 294. https://doi.org/10.3390/jfb13040294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. X. Yan, J. Chen, H. Yan, W. Xia, B. Su, H. Yin, and W. Huang, Effects of Ga Addition on the Corrosion Behaviours of High Strain Rate Rolled Mg–Ga Alloy Sheets, Corros. Eng. Sci. Technol., 2021, 56, p 530. https://doi.org/10.1080/1478422X.2021.1918839

    Article  CAS  Google Scholar 

  35. A. Bahmani, S. Arthanari, and K.S. Shin, Formulation of Corrosion Rate of Magnesium Alloys using Microstructural Parameters, J. Magnesium Alloys, 2020, 8, p 134. https://doi.org/10.1016/j.jma.2019.12.001

    Article  CAS  Google Scholar 

  36. N.N. Aung and W. Zhou, Effect of Grain Size and Twins on Corrosion behaviour of AZ31B Magnesium Alloy, Corros. Sci., 2010, 52, p 589. https://doi.org/10.1016/j.corsci.2009.10.018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant (No. 075-15-2022-1133). The mechanical tests have been carried out with the financial support of the Russian Science Foundation (project No. 22-79-10299, https://rscf.ru/project/22-79-10299/). The corrosion tests were carried out during the implementation of the strategic project, «Biomedical materials and bioengineering», within the framework of the Strategic Academic Leadership Program «Priority 2030» at NUST «MISIS».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogachev, S.O., Bazhenov, V.E., Komissarov, A.A. et al. Microstructure, Mechanical, and Corrosion Properties of Mg-Zn-Ga Alloy after Hot Rolling. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09361-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09361-2

Keywords

Navigation