Skip to main content
Log in

Inhibition Efficiency of 1-Butoxypropan-2-ol against the Corrosion of Mild Steel Exposed to Marine Environment: An Experimental and Microstructural Study

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The pursuit of effective corrosion inhibition, both theoretically and experimentally, has a significant impact on the global GDP and climate-related actions in infrastructure management. This current study aims to explore the corrosion reduction and inhibition mechanisms of 1-butoxypropan-2-ol (C7H16O2) otherwise known as propylene glycol 1- monobutyl ether on mild steel coupons immersed in a marine solution containing 3.5 wt.% NaCl. Three different molar concentrations of the proposed inhibitors were investigated, revealing that the most effective corrosion prevention occurred at a concentration of 100 mM on mild steel coupons. The initial assessment of the inhibition capacity involved gravimetric weight loss measurements, demonstrating an impressive inhibition efficiency of approximately 98%. Additionally, electrochemical analysis using Potentiodynamic Polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS) was conducted. The efficiency of the proposed inhibitor was determined to be around 67% and 78% after fitting the Nyquist and Tafel polarization plots, respectively. Despite the surfactant nature of the proposed inhibitor and the limited area considered for EIS, the results were deemed adequate and satisfactory based on the Tafel and EIS measurements. Microstructural studies were conducted using SEM images to detail variations in the morphology of the surface of both uninhibited and inhibited mild steel samples. The proposed inhibitor demonstrated satisfactory performance, evident through its presence on the surface and reduced NaCl accumulation on the mild steel. All tests were conducted at room temperature with a constant immersion time to ensure optimal outcomes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data and Code availability

Data will be made available on request.

References

  1. B.E. Brycki, I.H. Kowalczyk, A. Szulc, O. Kaczerewska, and M. Pakiet, Organic Corrosion Inhibitors, Corrosion Inhibit. Princip. Recent Appl., 2018, 11, p 13. https://doi.org/10.5772/intechopen.72943

    Article  CAS  Google Scholar 

  2. A. Kahyarian, A. Schumaker, B. Brown, and S. Nesic, Acidic Corrosion of Mild Steel in the Presence of Acetic Acid: Mechanism and Prediction, Electrochim. Acta, 2017, 258, p 639–652. https://doi.org/10.1016/j.electacta.2017.11.109

    Article  CAS  Google Scholar 

  3. M. Meriem-Benziane, B. Bou-Saïd, and N. Boudouani, The Effect of Crude Oil in the Pipeline Corrosion by the Naphthenic Acid and the Sulfur: A Numerical Approach, J. Pet. Sci. Eng., 2017, 158, p 672–679. https://doi.org/10.1016/j.petrol.2017.08.073

    Article  CAS  Google Scholar 

  4. H.U. Nwankwo, L.O. Olasunkanmi, and E.E. Ebenso, Experimental, Quantum Chemical and Molecular Dynamic Simulations Studies on the Corrosion Inhibition of Mild steel by Some Carbazole Derivatives, Sci. Rep., 2017, 7(1), p 1–18. https://doi.org/10.1038/s41598-017-02446-0

    Article  CAS  ADS  Google Scholar 

  5. A.A. Olajire, Corrosion Inhibition of Offshore Oil and Gas Production Facilities using Organic Compound Inhibitors–A Review, J. Mol. Liq., 2017, 248, p 775–808. https://doi.org/10.1016/j.molliq.2017.10.097

    Article  CAS  Google Scholar 

  6. W. Zhang, H.J. Li, M. Wang, L.J. Wang, A.H. Zhang, and Y.C. Wu, Highly Effective Inhibition of Mild Steel Corrosion in HCl Solution by using Pyrido [1,2-a]Benzimidazoles, New J. Chem., 2019, 43(1), p 413–426. https://doi.org/10.1039/C8NJ04028A

    Article  Google Scholar 

  7. S. Muralidharan, K.L.N. Phani, S. Pitchumani, S. Ravichandran, and S.V.K. Iyer, Polyamino-Benzoquinone Polymers: A New Class of Corrosion Inhibitors for Mild Steel, J. Electrochem. Soc., 1995, 142(5), p 1478. https://doi.org/10.1149/1.2048599

    Article  CAS  ADS  Google Scholar 

  8. S. Hooshmand Zaferani, M. Sharifi, D. Zaarei, and M.R. Shishesaz, Application of Eco-Friendly Products as Corrosion Inhibitors for Metals in Acid Pickling Processes - A Review’, J. Environ. Chem. Eng., 2013, 1(4), p 652–657. https://doi.org/10.1016/j.jece.2013.09.019

    Article  CAS  Google Scholar 

  9. J. Jomy, D. Prabhu, and P.R. Prabhu, Inhibitors Incorporated Into Water-Based Epoxy Coatings on Metals for Corrosion Protection: A Review, J. Bio- Tribo-Corrosion, 2022, 8(2), p 1–15. https://doi.org/10.1007/s40735-022-00643-7

    Article  Google Scholar 

  10. H. H. Uhlig and R. W. Revie, Corrosion and corrosion control. An introduction to corrosion science and engineering. Third Edition. 1985.

  11. C. Verma, M.A. Quraishi, L.O. Olasunkanmi, and E.E. Ebenso, L-Proline-Promoted Synthesis of 2-Amino-4-Arylquinoline-3-Carbonitriles as Sustainable Corrosion Inhibitors for Mild Steel in 1 M HCl: Experimental and Computational Studies, RSC Adv., 2015, 5(104), p 85417–85430. https://doi.org/10.1039/c5ra16982h

    Article  CAS  ADS  Google Scholar 

  12. J. Cai, C. Chen, J. Liu, and J. Liu, Corrosion Resistance of Carbon Steel in Simulated Concrete Pore Solution in Presence of 1-Dihydroxyethylamino-3-Dipropylamino-2-Propanol as Corrosion Inhibitor, Corros. Eng. Sci. Technol., 2014, 49(1), p 66–72. https://doi.org/10.1179/1743278213Y.0000000109

    Article  CAS  Google Scholar 

  13. B. Elsener, Corrosion of Steel in Concrete, Mater. Sci. Technol. A Compr. Treat., 2008, 1–2(July), p 389–436. https://doi.org/10.1002/9783527619306.ch17

    Article  Google Scholar 

  14. A. Singh, H. Samih Mohamed, S. Singh, H. Yu, and Y. Lin, Corrosion Inhibition using Guar Gum Grafted 2-Acrylamido-2-Methylpropanesulfonic Acid (GG-AMPS) in Tubular Steel Joints, Constr. Build. Mater., 2020, 258, p 119728. https://doi.org/10.1016/j.conbuildmat.2020.119728

    Article  CAS  Google Scholar 

  15. A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, A. Hossein Mostafatabar, and M. Ramezanzadeh, Estimating the Synergistic Corrosion Inhibition Potency of (2-(3,4-)-3,5,7-Trihydroxy-4H-Chromen-4-one) and tRivalent-Cerium Ions on Mild Steel in NaCl Solution’, Constr. Build. Mater., 2020, 261, p 119923. https://doi.org/10.1016/j.conbuildmat.2020.119923

    Article  CAS  Google Scholar 

  16. C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi, and I.B. Obot, Adsorption Behavior of Glucosamine-Based, Pyrimidine-Fused Heterocycles as Green Corrosion Inhibitors for Mild Steel: Experimental and Theoretical Studies, J. Phys. Chem. C, 2016, 120(21), p 11598–11611. https://doi.org/10.1021/acs.jpcc.6b04429

    Article  CAS  Google Scholar 

  17. J. Haque, V. Srivastava, C. Verma, and M.A. Quraishi, Experimental and Quantum Chemical Analysis of 2-Amino-3-((4-(( S )-2-Amino-2-Carboxyethyl)-1H-Imidazol-2-yl)Thio) Propionic Acid as New and Green Corrosion Inhibitor for Mild Steel in 1 M Hydrochloric Acid Solution, J. Mol. Liq., 2017, 225, p 848–855. https://doi.org/10.1016/j.molliq.2016.11.011

    Article  CAS  Google Scholar 

  18. R.S. Nathiya, S. Perumal, V. Murugesan, and V. Raj, Evaluation of Extracts of Borassus flabellifer Dust as Green Inhibitors for Aluminum Corrosion in Acidic Media, Mater. Sci. Semicond. Process., 2019, 104, 104674. https://doi.org/10.1016/j.mssp.2019.104674

    Article  CAS  Google Scholar 

  19. W. Zhang, Y. Liu, Y. Zhang, L.-J. Wang, Y.-C. Wu, and H.-J. Li, 9-Substituted Acridines as Effective Corrosion Inhibitors for Mild Steel: Electrochemical, Surface Morphology, and Computational Studies, New J. Chem., 2020, 44(16), p 6464–6474. https://doi.org/10.1039/D0NJ00440E

    Article  CAS  Google Scholar 

  20. T.K. Chaitra, K.N.S. Mohana, and H.C. Tandon, Thermodynamic, Electrochemical and Quantum Chemical Evaluation of Some Triazole Schiff Bases as Mild Steel Corrosion Inhibitors in Acid Media, J. Mol. Liq., 2015, 211, p 1026–1038. https://doi.org/10.1016/j.molliq.2015.08.031

    Article  CAS  Google Scholar 

  21. P. Singh, D.S. Chauhan, S.S. Chauhan, G. Singh, and M.A. Quraishi, Chemically Modified Expired Dapsone Drug as Environmentally Benign Corrosion Inhibitor for Mild Steel in Sulfuric acid Useful for industrial Pickling Process, J. Mol. Liq., 2019, 286, 110903. https://doi.org/10.1016/j.molliq.2019.110903

    Article  CAS  Google Scholar 

  22. L.O. Olasunkanmi, I.B. Obot, M.M. Kabanda, and E.E. Ebenso, Some Quinoxalin-6-yl Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Experimental and Theoretical Studies, J. Phys. Chem. C, 2015, 119(28), p 16004–16019. https://doi.org/10.1021/acs.jpcc.5b03285

    Article  CAS  Google Scholar 

  23. A.M. Mustafa et al., Inhibition of Mild Steel Corrosion in Hydrochloric Acid Environment by 1-Amino-2-Mercapto-5-(4-(pyrrol-1-yl)phenyl)-1,3,4-Triazole, South African J. Chem. Eng., 2022, 39, p 42–51. https://doi.org/10.1016/j.sajce.2021.11.009

    Article  Google Scholar 

  24. S. Granese, B. Rosales, C. Oviedo, and J. Zerbino, The Inhibition Action of Heterocyclic Nitrogen Organic Compounds on Fe and Steel in HCl Media, Corros. Sci., 1992, 33(9), p 1439–1453. https://doi.org/10.1016/0010-938X(92)90182-3

    Article  CAS  Google Scholar 

  25. J. Aljourani, K. Raeissi, and M.A. Golozar, Benzimidazole and its Derivatives as Corrosion Inhibitors for Mild Steel in 1M HCl Solution, Corros. Sci., 2009, 51(8), p 1836–1843. https://doi.org/10.1016/j.corsci.2009.05.011

    Article  CAS  Google Scholar 

  26. M. Behpour, S.M. Ghoreishi, N. Mohammadi, N. Soltani, and M. Salavati-Niasari, Investigation of Some Schiff Base Compounds Containing Disulfide Bond as HCl Corrosion Inhibitors for Mild Steel, Corros. Sci., 2010, 52(12), p 4046–4057. https://doi.org/10.1016/j.corsci.2010.08.020

    Article  CAS  Google Scholar 

  27. A. Singh, K.R. Ansari, D.S. Chauhan, M.A. Quraishi, and S. Kaya, Anti-Corrosion Investigation of Pyrimidine Derivatives as Green and Sustainable Corrosion Inhibitor for N80 steel in Highly Corrosive Environment: Experimental and AFM/XPS Study, Sustain. Chem. Pharm., 2020, 16, 100257. https://doi.org/10.1016/j.scp.2020.100257

    Article  Google Scholar 

  28. W. Zhang, R. Ma, H. Liu, Y. Liu, S. Li, and L. Niu, Electrochemical and Surface Analysis Studies of 2-(quinolin-2-yl)Quinazolin-4(3H)-One as Corrosion Inhibitor for Q235 Steel in Hydrochloric Acid, J. Mol. Liq., 2016, 222, p 671–679. https://doi.org/10.1016/j.molliq.2016.07.119

    Article  CAS  Google Scholar 

  29. Y.M. Panchenko and A.I. Marshakov, Long-Term Prediction of Metal Corrosion Losses in Atmosphere using a power-Linear Function, Corros. Sci., 2016, 109, p 217–229. https://doi.org/10.1016/j.corsci.2016.04.002

    Article  CAS  Google Scholar 

  30. H. Park, K.Y. Kim, and W. Choi, Photoelectrochemical Approach for Metal Corrosion Prevention using a Semiconductor Photoanode, J. Phys. Chem. B, 2002, 106(18), p 4775–4781. https://doi.org/10.1021/jp025519r

    Article  CAS  Google Scholar 

  31. M. Goyal, S. Kumar, I. Bahadur, C. Verma, and E.E. Ebenso, Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review, J. Mol. Liq., 2018, 256, p 565–573. https://doi.org/10.1016/j.molliq.2018.02.045

    Article  CAS  Google Scholar 

  32. M. Ihara, H. Nishihara, and K. Aramaki, The Inhibition of Iron Corrosion in Acid Solutions using Bismuth(III) Chloride, Corros. Sci., 1992, 33(8), p 1267–1279. https://doi.org/10.1016/0010-938X(92)90135-P

    Article  CAS  Google Scholar 

  33. W. Zhang, H.-J. Li, M. Wang, L.-J. Wang, F. Shang, and Y.-C. Wu, Halogen-Substituted Acridines as Highly Effective Corrosion Inhibitors for Mild Steel in Acid Medium, J. Phys. Chem. C, 2018, 122(44), p 25349–25364. https://doi.org/10.1021/acs.jpcc.8b07015

    Article  CAS  Google Scholar 

  34. M. Yadav, D. Behera, S. Kumar, and R.R. Sinha, Experimental and Quantum Chemical Studies on Corrosion Inhibition Performance of some Schiff Bases for Mild Steel in 4M HCL, Indian J. Chem. Technol., 2014, 21(4), p 262–271.

    Google Scholar 

  35. E.R. Thornton, Rates and Equilibria of Organc Reactions, Treated Stat, Thermodyn Extrathermodyn. Methods., 1964 https://doi.org/10.1021/ja01060a084

    Article  Google Scholar 

  36. V.S. Sastri, Green Corrosion Inhibitors: Theory and Practice, John Wiley & Sons., 2011 https://doi.org/10.1002/9781118015438

    Article  Google Scholar 

  37. F. Bentiss and M. Lagrenée, Heterocyclic Compounds as Corrosion Inhibitors for Mild Steel in Hydrochloric: Acid Medium-Correlation Between Electronic Structure and Inhibition Efficiency, J. Mater. Environ. Sci., 2011, 2(1), p 13–17.

    CAS  Google Scholar 

  38. T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, and H. Alemu, Quantum Chemical Studies on the Corrosion Inhibition of Some Sulphonamides on Mild Steel in Acidic Medium, Corros. Sci., 2009, 51(1), p 35–47. https://doi.org/10.1016/j.corsci.2008.10.016

    Article  CAS  Google Scholar 

  39. C. Monticelli, ‘Corrosion Inhibitors,’ in Encyclopedia of Interfacial Chemistry, Elsevier, 2018, pp. 164-171. doi: https://doi.org/10.1016/B978-0-12-409547-2.13443-2.

  40. K.A. Alamry, R. Aslam, A. Khan, M.A. Hussein, and N.Y. Tashkandi, Evaluation of Corrosion Inhibition Performance of Thiazolidine-2,4-Diones and its Amino Derivative: Gravimetric, Electrochemical, Spectroscopic, and Surface Morphological Studies, Process. Saf. Environ. Prot., 2022, 159, p 178–197. https://doi.org/10.1016/j.psep.2021.12.061

    Article  CAS  Google Scholar 

  41. I.A.W. Ma, S. Ammar, S.S.A. Kumar, K. Ramesh, and S. Ramesh, A Concise Review on Corrosion Inhibitors: Types, Mechanisms and Electrochemical Evaluation Studies, J. Coatings Technol. Res., 2022, 19(1), p 241–268. https://doi.org/10.1007/s11998-021-00547-0

    Article  CAS  Google Scholar 

  42. S. Shiao et al., Chain Length Compatibility Effects in Mixed Surfactant systems for Technological Applications, Adv. Colloid Interface Sci., 1998, 74(1–3), p 1–29. https://doi.org/10.1016/S0001-8686(97)00005-5

    Article  CAS  Google Scholar 

  43. S.A. Umoren, O. Ogbobe, I.O. Igwe, and E.E. Ebenso, Inhibition of Mild Steel Corrosion in Acidic Medium using Synthetic and Naturally Occurring Polymers and Synergistic Halide Additives, Corros. Sci., 2008, 50(7), p 1998–2006. https://doi.org/10.1016/j.corsci.2008.04.015

    Article  CAS  Google Scholar 

  44. M.L. Free, Understanding the Effect of Surfactant Aggregation on Corrosion Inhibition of Mild Steel in Acidic Medium, Corros. Sci., 2002, 44(12), p 2865–2870. https://doi.org/10.1016/S0010-938X(02)00080-X

    Article  CAS  Google Scholar 

  45. L. Niu, H. Zhang, F. Wei, S. Wu, X. Cao, and P. Liu, Corrosion Inhibition of Iron in Acidic Solutions by Alkyl Quaternary Ammonium Halides: Correlation Between inhibition Efficiency and Molecular Structure, Appl. Surf. Sci., 2005, 252(5), p 1634–1642. https://doi.org/10.1016/j.apsusc.2005.02.134

    Article  CAS  ADS  Google Scholar 

  46. W. Wang and M.L. Free, Prediction and Measurement of Corrosion Inhibition of Mild Steel using Nonionic Surfactants in Chloride Media, Corros. Sci., 2004, 46(10), p 2601–2611. https://doi.org/10.1016/S0010-938X(03)00152-5

    Article  CAS  Google Scholar 

  47. L.-G. Qiu, Y. Wu, Y.-M. Wang, and X. Jiang, Synergistic Effect Between Cationic Gemini Surfactant and Chloride Ion for the Corrosion Inhibition of Steel in Sulfuric Acid, Corros. Sci., 2008, 50(2), p 576–582. https://doi.org/10.1016/j.corsci.2007.07.010

    Article  CAS  Google Scholar 

  48. M.L. Free, A New Corrosion Inhibition Model for Surfactants that more Closely Accounts for Actual Adsorption than Traditional Models that Assume Physical Coverage is Proportional to Inhibition, Corros. Sci., 2004, 46(12), p 3101–3113. https://doi.org/10.1016/j.corsci.2004.03.020

    Article  CAS  Google Scholar 

  49. S.S. Abd El Rehim, H.H. Hassan, and M.A. Amin, Corrosion Inhibition Study of Pure Al and Some of its Alloys in 1.0 M HCl Solution by Impedance Technique, Corros. Sci., 2004, 46(1), p 5–25. https://doi.org/10.1016/S0010-938X(03)00133-1

    Article  CAS  Google Scholar 

  50. L.-G. Qiu, A.-J. Xie, and Y.-H. Shen, Understanding the Adsorption of Cationic Gemini Surfactants on Steel Surface in Hydrochloric Acid, Mater. Chem. Phys., 2004, 87(2–3), p 237–240. https://doi.org/10.1016/j.matchemphys.2004.06.014

    Article  CAS  Google Scholar 

  51. X. Li, S. Deng, G. Mu, H. Fu, and F. Yang, Inhibition effect of nonionic surfactant on the corrosion of cold rolled steel in hydrochloric acid, Corros. Sci., 2008, 50(2), p 420–430. https://doi.org/10.1016/j.corsci.2007.08.014

    Article  CAS  Google Scholar 

  52. T. Soror and M. El-Ziady, Effect of Cetyl Trimethyl Ammonium Bromide on the Corrosion of Carbon Steel in Acids, Mater. Chem. Phys., 2003, 77(3), p 697–703. https://doi.org/10.1016/S0254-0584(02)00129-3

    Article  CAS  Google Scholar 

  53. S.T. Keera and M.A. Deyab, Effect of Some Organic Surfactants on the Electrochemical Behavior of Carbon Steel in Formation Water, Colloids Surf A Physicochem Eng Asp, 2005, 266(1–3), p 129–140. https://doi.org/10.1016/j.colsurfa.2005.05.069

    Article  CAS  Google Scholar 

  54. H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Impedance Spectroscopic Study of Corrosion Inhibition of Copper by Surfactants in the Acidic Solutions, Corros. Sci., 2003, 45(5), p 867–882. https://doi.org/10.1016/S0010-938X(02)00175-0

    Article  CAS  Google Scholar 

  55. B. Liao, Z. Luo, S. Wan, and L. Chen, Insight into the Anti-Corrosion Performance of Acanthopanax Senticosus Leaf Extract as Eco-Friendly Corrosion Inhibitor for Carbon Steel in Acidic Medium, J. Ind. Eng. Chem., 2023, 117, p 238–246. https://doi.org/10.1016/j.jiec.2022.10.010

    Article  CAS  Google Scholar 

  56. R. Fuchs-Godec, Effects of Surfactants and their Mixtures on Inhibition of the Corrosion Process of Ferritic Stainless Steel, Electrochim. Acta, 2009, 54(8), p 2171–2179. https://doi.org/10.1016/j.electacta.2008.10.014

    Article  CAS  Google Scholar 

  57. R. Fuchs-Godec, The Erosion−Corrosion Inhibition of AISI 431 Martensitic Stainless Steel in 2.0 M H2SO4 Solution Using N -Alkyl Quaternary Ammonium Salts as Inhibitors, Ind. Eng. Chem. Res., 2010, 49(14), p 6407–6415. https://doi.org/10.1021/ie100275a

    Article  CAS  Google Scholar 

  58. N.A. Negm and M.F. Zaki, Corrosion Inhibition Efficiency of Nonionic Schiff Base Amphiphiles of p-Aminobenzoic Acid for Aluminum in 4N HCL, Colloids Surf A Physicochem Eng Asp, 2008, 322(1–3), p 97–102. https://doi.org/10.1016/j.colsurfa.2008.02.027

    Article  CAS  Google Scholar 

  59. K. Bhati, D.B. Tripathy, and A. Gupta, Acridine as Bioinspired Corrosion Inhibitors, Macromol. Symp., 2023 https://doi.org/10.1002/masy.202200106

    Article  Google Scholar 

  60. Q. Yang, Q. Zhou, and P. Somasundaran, Nmr Study of Micellar Microstructures of Cationic Single-Chain and Gemini Surfactants and their Mixtures with Nonionic Surfactant n-Dodecyl-β-d-Maltoside, Colloids Surf A Physicochem Eng Asp, 2008, 322(1–3), p 40–46. https://doi.org/10.1016/j.colsurfa.2008.02.026

    Article  CAS  Google Scholar 

  61. A. Meziani, D. Touraud, A. Zradba, M. Clausse, and W. Kunz, Co-Surfactant Properties of Ketones, J. Mol. Liq., 2000, 84(3), p 301–311. https://doi.org/10.1016/S0167-7322(99)00196-8

    Article  CAS  Google Scholar 

  62. M.M. Saleh and A.A. Atia, Effects of Structure of the Ionic Head of Cationic Surfactant on its Inhibition of Acid Corrosion of Mild Steel, J. Appl. Electrochem., 2006, 36(8), p 899–905. https://doi.org/10.1007/s10800-006-9147-6

    Article  CAS  Google Scholar 

  63. G. Basu Ray, I. Chakraborty, S. Ghosh, and S.P. Moulik, On Mixed Binary Surfactant Systems Comprising MEGA 10 and Alkyltrimethylammonium Bromides: A Detailed Physicochemical Study with a Critical Analysis, J. Colloid Interface Sci., 2007, 307(2), p 543–553. https://doi.org/10.1016/j.jcis.2006.11.055

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Y. Xie and X. He, Asymmetric Gemini Surfactants as Corrosion Inhibitors for Carbon Steel in Acidic Medium: Experimental and Theoretical Studies, Colloids Surf A Physicochem Eng Asp, 2023, 660, 130850. https://doi.org/10.1016/j.colsurfa.2022.130850

    Article  CAS  Google Scholar 

  65. S. Subash, S. Moharana, and Y.S. Sistla, Inhibition Mechanism of Oxalhydrazide on Reinforcing Steel in Pore Solution Contaminated by 3.5%NaCl–Experimental and Theoretical Study, MATEC Web Conf., 2023, 378, p 07005. https://doi.org/10.1051/matecconf/202337807005

    Article  CAS  Google Scholar 

  66. D.S. Chauhan, K. EL Mouaden, M.A. Quraishi, and L. Bazzi, Aminotriazolethiol-Functionalized Chitosan as a Macromolecule-Based Bioinspired Corrosion Inhibitor for Surface Protection of Stainless Steel in 3.5% NaCl, Int. J. Biol. Macromol., 2020, 152, p 234–241. https://doi.org/10.1016/j.ijbiomac.2020.02.283

    Article  CAS  PubMed  Google Scholar 

  67. A.S. El-Tabei and M.A. Hegazy, A Corrosion Inhibition Study Of A Novel Synthesized Gemini Nonionic Surfactant for Carbon Steel In 1 M HCl Solution, J. Surfactants Deterg., 2013, 16(5), p 757–766. https://doi.org/10.1007/s11743-013-1457-1

    Article  CAS  Google Scholar 

  68. A.T.J. Rani, A. Thomas, L. Williams, and A. Joseph, Effect of Lunamarine, the Major Constituent of Boerhaavia diffusa Leave Extract on the Corrosion Inhibition of Mild Steel in Hydrochloric Acid; Computational Modeling, Surface Screening and Electroanalytical Studies, J. Bio- Tribo-Corrosion, 2022 https://doi.org/10.1007/s40735-021-00616-2

    Article  Google Scholar 

  69. M. Garg, H.S. Grewal, R.K. Sharma, B. Gwalani, and H.S. Arora, Limiting Oxidation of High Entropy Alloy Via High Strain-Rate Deformation: Insights from Electrochemical Impedance Spectroscopy, Mater. Chem. Phys., 2023 https://doi.org/10.1016/j.matchemphys.2022.127017

    Article  Google Scholar 

  70. M. Mobin and M.A. Khan, Synergistic Influence of Polyvinyl Alcohol and Surfactants on the Corrosion Inhibition of Mild Steel in 0.1 M H2So4, Chem. Eng. Commun., 2013, 200(9), p 1149–1169. https://doi.org/10.1080/00986445.2012.737384

    Article  CAS  Google Scholar 

  71. E.F. Olasehinde, B.E. Agbaffa, M.A. Adebayo, and J. Enis, Corrosion Protection of Mild Steel in Acidic Medium by Titanium-Based Nanocomposite of Chromolaena Odorata Leaf Extract, Mater. Chem. Phys., 2022, 281, 125856. https://doi.org/10.1016/j.matchemphys.2022.125856

    Article  CAS  Google Scholar 

  72. T. Rabizadeh and S.K. Asl, Casein as a Natural Protein to Inhibit the Corrosion of Mild Steel in HCl Solution, J. Mol. Liq., 2019, 276, p 694–704. https://doi.org/10.1016/j.molliq.2018.11.162

    Article  CAS  Google Scholar 

  73. M.A. Amin and M.M. Ibrahim, Corrosion and Corrosion Control of Mild Steel in Concentrated H2SO4 Solutions by a Newly Synthesized Glycine Derivative, Corros. Sci., 2011, 53(3), p 873–885. https://doi.org/10.1016/j.corsci.2010.10.022

    Article  CAS  Google Scholar 

  74. H.J. Habeeb, H.M. Luaibi, T.A. Abdullah, R.M. Dakhil, A.A.H. Kadhum, and A.A. Al-Amiery, Case Study on Thermal Impact of Novel Corrosion Inhibitor on Mild Steel, Case Stud. Therm. Eng., 2018, 12, p 64–68. https://doi.org/10.1016/j.csite.2018.03.005

    Article  Google Scholar 

  75. X. Yu, B. Li, L. Wu, D. Shi, and S. Han, Review and Perspectives of Monolithic Metal-Organic Frameworks: Toward Industrial Applications, Energy Fuels, 2023 https://doi.org/10.1021/acs.energyfuels.3c00858

    Article  Google Scholar 

  76. P. Pedeferri, Corrosion Science and Engineering. Cham: Springer International Publishing, 2018. doi: https://doi.org/10.1007/978-3-319-97625-9.

  77. N. C. for B. I., ‘‘PubChem Compound Summary for CID 21210, 1-Butoxy-2-propanol,’’ PubChem, 2024.

Download references

Acknowledgments

The authors would like to thank Shiv Nadar Institution of Eminence, Delhi NCR for supporting our research by providing funding and facilities which aid in carrying out our research.

Author information

Authors and Affiliations

Authors

Contributions

SS: Conceptualization, Methodology, Investigations, Writing—original draft and formal analysis. MG: Methodology, Writing—review and editing. SM: Supervision, Resources, Formal Analysis, Writing—review and editing. HSA: Supervision, Resources, Writing—review and editing

Corresponding author

Correspondence to Sumedha Moharana.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subash, S., Garg, M., Moharana, S. et al. Inhibition Efficiency of 1-Butoxypropan-2-ol against the Corrosion of Mild Steel Exposed to Marine Environment: An Experimental and Microstructural Study. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09280-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09280-2

Keywords

Navigation