Skip to main content
Log in

Understanding the Structure and Electrochemical Behavior of the Rust Layer Formed on a High-Strength Low-Alloy Structural Steel under Cyclic Exposure to Polluted Marine Atmosphere

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The surface rust layer of ASTM A572 grade 50 high-strength low-alloy structural steel was examined under laboratory wet/dry cyclic corrosion test (CCT) conditions in a simulated polluted marine environment. According to the corrosion kinetics study, the entire corrosion process in the sample occurred in four stages, which were identified by the power law exponent, evolved phases, and electrochemical behavior of the rust layer at various stages. During the early stages of corrosion, the reduction of rust layer phases and the anodic dissolution of the steel substrate accelerated the overall corrosion rate. Variations in the corrosion rate were observed as the composition of the rust layer stabilized with increasing CCT cycle due to cracking and self-repairing of the rust layer. At higher CCT, the composition of the rust layer gradually changed from a conductive γ-FeOOH phase to a stable α-FeOOH phase. The electrochemical impedance analysis also revealed an increase in rust layer resistance as well as charge transfer resistance of side reactions such as hydrogen evolution reaction (HER). As a result, as CCT increased, corrosion resistance and thus the protective ability index increased (PAI). The defect density in the semiconducting rust layer formed at higher CCT was lower, indicating a higher level of protection. Based on the findings, a plausible mechanism of growth of the protective rust layer on the steel sample was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author, upon reasonable request.

References

  1. L. Silvestre, P. Langenberg, T. Amaral, M. Carboni, M. Meira, and A. Jordão (2016) Use of niobium high strength steels with 450 MPA yield strength for construction, in HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, 1, Nov 11th–13th, 2015 (China). Springer, p 931–939.

  2. L. Silvestre, R. Pimenta, M. Nogueira, L. Queiroz, H. Salles, A. Jordão, R. Ribeiro, M. Pimenta, J. Conceição, L. Rocha, and F. Buratto, High Strength Steel as a Solution for the Lean Design of Industrial Buildings, J. Mater. Res. Technol., 2012, 1(1), p 35–41.

    Article  CAS  Google Scholar 

  3. E. Olorundaisi, T. Jamiru, and A.T. Adegbola, Mitigating the Effect of Corrosion and Wear in the Application of High Strength Low Alloy Steels (HSLA) in the Petrochemical Transportation Industry: A review, Mater. Res. Express, 2020, 6(12), p 1265k9.

    Article  Google Scholar 

  4. S. Keeler and M. Kimchi, Advanced High-Strength Steels Application Guidelines V5.0, WorldAutoSteel, 2015.

  5. M. Natesan, S. Muralidharan, and N. Palaniswamy, Atmospheric Corrosion Performance of Engineering Materials in India, NACE International, 2010, 49(8), p 60–66.

    CAS  Google Scholar 

  6. Y. Xu, Y. Huang, F. Cai, D. Lu, and X. Wang, Study on Corrosion Behavior and Mechanism of AISI 4135 Steel in Marine Environments Based on Field Exposure Experiment, Sci. Total. Environ., 2022, 830, 154864.

    Article  CAS  PubMed  Google Scholar 

  7. Z.L. Li, K. Xiao, C.F. Dong, X.Q. Cheng, W. Xue, and W. Yu, Atmospheric Corrosion Behavior of Low-Alloy Steels in a Tropical Marine Environment, J. Iron. Steel Res. Int., 2019, 26(12), p 1315–1328.

    Article  CAS  Google Scholar 

  8. P. Murkute, R. Kumar, S. Choudhary, H.S. Maharana, J. Ramkumar, and K. Mondal, Comparative Atmospheric Corrosion Behavior of a Mild Steel and an Interstitial Free Steel, J. Mater. Eng. Perform., 2018, 27(9), p 4497–4506.

    Article  CAS  Google Scholar 

  9. Y. Fan, W. Liu, S. Li, T. Chowwanonthapunya, B. Wongpat, Y. Zhao, B. Dong, T. Zhang, and X. Li, Evolution of Rust Layers on Carbon Steel and Weathering Steel in High Humidity and Heat Marine Atmospheric Corrosion, J. Mater. Sci. Technol., 2020, 39, p 190–199.

    Article  CAS  Google Scholar 

  10. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion during a Quarter of a Century, Corros. Sci., 1994, 36(2), p 283–299.

    Article  CAS  Google Scholar 

  11. S.J. Oh, D.C. Cook, and H.E. Townsend, Atmospheric Corrosion of Different Steels in Marine, Rural and Industrial Environments, Corros. Sci., 1999, 41(9), p 1687–1702.

    Article  CAS  Google Scholar 

  12. D.D. Singh, S. Yadav, and J.K. Saha, Role of Climatic Conditions on Corrosion Characteristics of Structural Steels, Corros. Sci., 2008, 50(1), p 93–110.

    Article  CAS  Google Scholar 

  13. F. Wu, Z. Hu, X. Liu, C. Su, and L. Hao, Understanding in Compositional Phases of Carbon Steel Rust Layer with a Long-Term Atmospheric Exposure, Mater. Lett., 2022, 315, 131968.

    Article  CAS  Google Scholar 

  14. W. Zhu, Y. Zhao, Y. Feng, J. Cui, Z. Chen, and L. Chen, Structure and Electrochemical Behavior of the Rust on 690 MPa Grade Construction Steel in a Simulated Industrial Atmosphere, Metall. Mater. Trans. A, 2022, 53(8), p 3044–3056.

    Article  CAS  Google Scholar 

  15. B. Liu, X. Mu, Y. Yang, L. Hao, X. Ding, J. Dong, Z. Zhang, H. Hou, and W. Ke, Effect of Tin Addition on Corrosion Behavior of a Low-Alloy Steel in Simulated Costal-Industrial Atmosphere, J. Mater. Sci. Technol., 2019, 35(7), p 1228–1239.

    Article  CAS  Google Scholar 

  16. U.R. Evans and C.A. Taylor, Mechanism of Atmospheric Rusting, Corros. Sci., 1972, 12(3), p 227–246.

    Article  CAS  Google Scholar 

  17. X. Feng, X. Lu, Y. Zuo, N. Zhuang, and D. Chen, The Effect of Deformation on Metastable Pitting of 304 Stainless Steel in Chloride Contaminated Concrete Pore Solution, Corros. Sci., 2016, 103, p 223–229.

    Article  CAS  Google Scholar 

  18. Y. Lu, J. Dong, and W. Ke, Effects of Cl Ions on the Corrosion Behaviour of Low Alloy Steel in Deaerated Bicarbonate Solutions, J. Mater. Sci. Technol., 2016, 32(4), p 341–348.

    Article  CAS  Google Scholar 

  19. Y.F. Cheng, M. Wilmott, and J.L. Luo, The Role of Chloride Ions in Pitting of Carbon Steel Studied by the Statistical Analysis of Electrochemical Noise, Appl. Surf. Sci., 1999, 152(3–4), p 161–168.

    Article  CAS  Google Scholar 

  20. W. Chen, L. Hao, J. Dong, and W. Ke, Effect of Sulphur Dioxide on the Corrosion of a Low Alloy Steel in Simulated Coastal Industrial Atmosphere, Corros. Sci., 2014, 83, p 155–163.

    Article  CAS  Google Scholar 

  21. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. de la Fuente, Characterization of Corrosion Products Formed on Ni 2.4 wt.%-Cu 0.5 wt.%-Cr 0.5 wt.% Weathering Steel Exposed in Marine Atmospheres, Corros. Sci., 2014, 87, p 438–451.

    Article  CAS  Google Scholar 

  22. C. Rémazeilles, M. Saheb, D. Neff, E. Guilminot, K. Tran, J.A. Bourdoiseau, R. Sabot, M. Jeannin, H. Matthiesen, P. Dillmann, and P. Refait, Microbiologically Influenced Corrosion of Archaeological Artefacts: Characterization of Iron (II) Sulfides by Raman Spectroscopy, J. Raman Spectrosc., 2010, 41(11), p 1425–1433.

    Article  Google Scholar 

  23. S.J. Oh, D.C. Cook, and H.E. Townsend, Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel, Hyperfine Interact., 1998, 112(1), p 59–66.

    Article  CAS  Google Scholar 

  24. A. Artigas, A. Monsalve, K. Sipos, O. Bustos, J. Mena, R. Seco, and N. Garza-Montes-de-Oca, Development of Accelerated Wet–Dry Cycle Corrosion Test in Marine Environment for Weathering Steels, Corros. Eng. Sci. Technol., 2015, 50(8), p 628–632.

    Article  Google Scholar 

  25. T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions, Corrosion (Houston, TX, U. S.), 2000, 56(9), p 935–941.

    Article  CAS  Google Scholar 

  26. X. Liu, Y. Sui, J. Zhou, Y. Liu, X. Li, and J. Hou, Influence of Available Chlorine on Corrosion Behaviour of Low Alloy Marine Steel in Natural Seawater, Corros. Eng. Sci. Technol., 2023, 58, p 1–7.

    Article  Google Scholar 

  27. B. Zhang, W. Liu, Y. Sun, W. Yang, L. Chen, J. Xie, and W. Li, Corrosion Behavior of the 3 wt.% Ni Weathering Steel with Replacing 1 wt.% Cr in the Simulated Tropical Marine Atmospheric Environment, J. Phys. Chem. Solids, 2023, 175, p 111221.

    Article  CAS  Google Scholar 

  28. T. Zhang, L. Hao, Z. Jiang, C. Liu, L. Zhu, X. Cheng, Z. Liu, N. Wang, and X. Li, Investigation of Rare Earth (RE) on Improving the Corrosion Resistance of Zr-Ti Deoxidized Low Alloy Steel in the Simulated Tropic Marine Atmospheric Environment, Corros. Sci., 2023, 19, 111335.

    Article  Google Scholar 

  29. R.F. Assumpção, V.C. Campideli, V.F. Lins, and D.C. Sicupira, Comparative Analysis on Corrosion Behavior of Si-Based Weathering Steels in a Simulated Industrial Atmosphere, J. Mater. Eng. Perform., 2023, 11, p 1–9.

    Google Scholar 

  30. Y. Fan, W. Liu, Z. Sun, T. Chowwanonthapunya, Y. Zhao, B. Dong, T. Zhang, and W. Banthukul, Effect of Chloride Ion on Corrosion Resistance of Ni-Advanced Weathering Steel in Simulated Tropical Marine Atmosphere, Constr. Build. Mater., 2021, 266, 120937.

    Article  CAS  Google Scholar 

  31. B. Dong, W. Liu, T. Zhang, L. Chen, Y. Fan, Y. Zhao, H. Li, W. Yang, and Y. Sun, Clarifying the Effect of a Small Amount of Cr Content on the Corrosion of Ni-Mo Steel in Tropical Marine Atmospheric Environment, Corros. Sci., 2023, 210, 110813.

    Article  CAS  Google Scholar 

  32. L. Hao, S. Zhang, J. Dong, and W. Ke, Atmospheric Corrosion Resistance of MnCuP Weathering Steel in Simulated Environments, Corros. Sci., 2011, 53(12), p 4187–4192.

    Article  CAS  Google Scholar 

  33. A.L. Rudd and C.B. Breslin, The Influence of Ultraviolet Illumination on the Passive Behavior of Zinc, J. Electrochem. Soc., 2000, 147(4), p 1401.

    Article  CAS  Google Scholar 

  34. N.E. Hakiki, M.D. Belo, A.M. Simoes, and M.G. Ferreira, Semiconducting Properties of Passive Films Formed on Stainless Steels: Influence of the Alloying Elements, J. Electrochem. Soc., 1998, 145(11), p 3821.

    Article  CAS  Google Scholar 

  35. E. Sikora and D.D. Macdonald, The Passivity of Iron in the Presence of Ethylenediaminetetraacetic Acid I. General Electrochemical Behavior, J. Electrochem. Soc., 2000, 147(11), p 4087.

    Article  CAS  Google Scholar 

  36. S. Ningshen, U.K. Mudali, V.K. Mittal, and H.S. Khatak, Semiconducting and Passive Film Properties of Nitrogen-Containing Type 316LN Stainless Steels, Corros. Sci., 2007, 49(2), p 481–496.

    Article  CAS  Google Scholar 

  37. M.F. Montemor, M.G. Ferreira, N.E. Hakiki, and M.D. Belo, Chemical Composition and Electronic Structure of the Oxide Films Formed on 316L Stainless Steel and Nickel Based Alloys in High Temperature Aqueous Environments, Corros. Sci., 2000, 42(9), p 1635–1650.

    Article  CAS  Google Scholar 

  38. C. Sunseri, S. Piazza, and F. Di Quarto, Photocurrent Spectroscopic Investigations of Passive Films on Chromium, J. Electrochem. Soc., 1990, 137(8), p 2411.

    Article  CAS  Google Scholar 

  39. A.M. Simoes, M.G. Ferreira, B. Rondot, and M. da Cunha Belo, Study of Passive Films Formed on AISI 304 Stainless Steel by Impedance Measurements and Photo Electrochemistry, J. Electrochem. Soc., 1990, 137(1), p 82.

    Article  CAS  Google Scholar 

  40. M. Sun, K. Xiao, C. Dong, X. Li, and P. Zhong, Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution, Metall. Mater. Trans. A, 2013, 44(10), p 4709–4717.

    Article  CAS  Google Scholar 

  41. J.W. Schultze and M.M. Lohrengel, Stability, Reactivity and Breakdown of Passive Films. Problems of Recent and Future Research, Electrochim. Acta, 2000, 45(15–16), p 2499–2513.

    Article  CAS  Google Scholar 

  42. M. Pourbaix, The linear bilogarithmic law for atmospheric corrosion, in Atmospheric Corrosion, Hollywood, FL, Oct. 5–10, Proceedings, 1982, p 107–121.

  43. S. Feliu and M. Morcillo, Atmospheric corrosion testing in Spain, atmospheric corrosion, corrosion monograph series, The Electrochemical Society. W.H. Ailor Ed., Inc, Princeton, 1982

    Google Scholar 

  44. M. Benarie and F.L. Lipfert, A General Corrosion Function in Terms of Atmospheric Pollutant Concentrations and Rain pH, Atmos. Environ. (1967–1989), 1986, 20(10), p 1947–1958.

    Article  CAS  Google Scholar 

  45. M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. De la Fuente, Atmospheric Corrosion Data of Weathering Steels: A Review, Corros. Sci., 2013, 77, p 6–24.

    Article  CAS  Google Scholar 

  46. M. Morcillo, B. Chico, J. Alcántara, I. Díaz, R. Wolthuis, and D. De la Fuente, SEM/Micro-Raman Characterization of the Morphologies of Marine Atmospheric Corrosion Products Formed on Mild Steel, J. Electrochem. Soc., 2016, 163(8), p C426.

    Article  CAS  Google Scholar 

  47. D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man, and X. Li, Superior Resistance to Hydrogen Damage for Selective Laser Melted 316L Stainless Steel in a Proton Exchange Membrane Fuel Cell Environment, Corros. Sci., 2020, 166, 108425.

    Article  CAS  Google Scholar 

  48. J. Alcántara, B. Chico, J. Simancas, I. Díaz, D. De la Fuente, and M. Morcillo, An Attempt to Classify the Morphologies Presented by Different Rust Phases Formed during the Exposure of Carbon Steel to Marine Atmospheres, Mater Charact, 2016, 118, p 65–78.

    Article  Google Scholar 

  49. J. Alcántara, B. Chico, I. Díaz, D. De la Fuente, and M. Morcillo, Airborne Chloride Deposit and its Effect on Marine Atmospheric Corrosion of Mild Steel, Corros. Sci., 2015, 97, p 74–88.

    Article  Google Scholar 

  50. T. Ohtsuka and S. Tanaka, Monitoring the Development of Rust Layers on Weathering Steel using in Situ Raman Spectroscopy under Wet-and-Dry Cyclic Conditions, J. Solid State Electrochem., 2015, 19(12), p 3559–3566.

    Article  CAS  Google Scholar 

  51. J. Monnier, L. Bellot-Gurlet, D. Baron, D. Neff, I. Guillot, and P. Dillmann, A methodology for Raman Structural Quantification Imaging and its Application to Iron Indoor Atmospheric Corrosion Products, J. Raman Spectrosc., 2011, 42(4), p 773–781.

    Article  CAS  Google Scholar 

  52. N. Yucel, A. Kalkanli, and E.N. Caner-Saltik, Investigation of Atmospheric Corrosion Layers on Historic Iron Nails by Micro-Raman Spectroscopy, J. Raman Spectrosc., 2016, 47(12), p 1486–1493.

    Article  CAS  Google Scholar 

  53. D.L. De Faria, S. Venâncio Silva, and M.T. De Oliveira, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 1997, 28(11), p 873–878.

    Article  Google Scholar 

  54. W. Liu, J. Liu, H. Pan, F. Cao, Z. Wu, H. Lv, and Z. Xu, Synergisic Effect of Mn, Cu, P with Cr Content on the Corrosion Behavior of Weathering Steel as a Train under the Simulated Industrial Atmosphere, J. Alloys Compd., 2020, 834, 155095.

    Article  CAS  Google Scholar 

  55. K. Kashima, S. Hara, H. Kishikawa, and H. Miyuki, Evaluation of Protective Ability of Rust Layers on Weathering Steels by Potential Measurement, Zairyo to Kankyo, 2000, 49(1), p 15–21. (in Japanese)

    Article  CAS  Google Scholar 

  56. Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, and S. Xie, Compact-Designed Supercapacitors using Free-Standing Single-Walled Carbon Nanotube Films, Energy Environ. Sci., 2011, 4(4), p 1440–1446.

    Article  CAS  Google Scholar 

  57. P.L. Taberna, C. Portet, and P. Simon, Electrode Surface Treatment and Electrochemical Impedance Spectroscopy Study on Carbon/Carbon Supercapacitors, Appl. Phys. A Mater. Sci. Process., 2006, 82(4), p 639–646.

    Article  CAS  Google Scholar 

  58. N.H. Basri and B.N. Dolah, Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon, Int. J. Electrochem. Sci., 2013, 8, p 257–273.

    Article  Google Scholar 

  59. A. Nishikata, Y. Ichihara, and T. Tsuru, An Application of Electrochemical Impedance Spectroscopy to Atmospheric Corrosion Study, Corros. Sci., 1995, 37(6), p 897–911.

    Article  CAS  Google Scholar 

  60. C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, and H. Terryn, Effect of Inclusions Modified by Rare Earth Elements (Ce, La) on Localized Marine Corrosion in Q460NH Weathering Steel, Corros. Sci., 2017, 129, p 82–90.

    Article  CAS  Google Scholar 

  61. Y. Wang, X. Mu, J. Dong, A.J. Umoh, and W. Ke, Insight into Atmospheric Corrosion Evolution of Mild Steel in a Simulated Coastal Atmosphere, J. Mater. Sci. Technol., 2021, 76, p 41–50.

    Article  CAS  Google Scholar 

  62. Y. Sun, X. Wei, J. Dong, N. Chen, H. Zhao, Q. Ren, and W. Ke, Understanding the Role of Alloyed Ni and Cu on Improving Corrosion Resistance of Low Alloy Steel in the Simulated Beishan Groundwater, J. Mater. Sci. Technol., 2022, 130, p 124–135.

    Article  CAS  Google Scholar 

  63. M. Hosseini, S.F. Mertens, M. Ghorbani, and M.R. Arshadi, Asymmetrical Schiff Bases as Inhibitors of Mild Steel Corrosion in Sulphuric Acid Media, Mater. Chem. Phys., 2003, 78(3), p 800–808.

    Article  CAS  Google Scholar 

  64. I.M. Gadala and A. Alfantazi, A Study of X100 Pipeline Steel Passivation in Mildly Alkaline Bicarbonate Solutions Using Electrochemical Impedance Spectroscopy under Potentiodynamic Conditions and Mott–Schottky, Appl. Surf. Sci., 2015, 357, p 356–368.

    Article  CAS  Google Scholar 

  65. G. Tranchida, F. Di Franco, B. Megna, and M. Santamaria, Semiconducting Properties of Passive Films and Corrosion Layers on Weathering Steel, Electrochim. Acta, 2020, 354, 136697.

    Article  CAS  Google Scholar 

  66. J. Benzakour and A. Derja, Characterisation of the Passive Film on Iron in Phosphate Medium by Voltammetry and XPS Measurements, J. Electroanal. Chem., 1997, 437(1–2), p 119–124.

    Article  CAS  Google Scholar 

  67. Z. Feng, X. Cheng, C. Dong, L. Xu, and X. Li, Passivity of 316L Stainless Steel in Borate Buffer Solution Studied by Mott–Schottky Analysis, Atomic Absorption Spectrometry and X-Ray Photoelectron Spectroscopy, Corros. Sci., 2010, 52(11), p 3646–3653.

    Article  CAS  Google Scholar 

  68. Y.S. Kim and J.G. Kim, Corrosion Behavior of Pipeline Carbon Steel under Different Iron Oxide Deposits in the District Heating System, Metals (Basel Switz.), 2017, 7(5), p 182.

    Article  Google Scholar 

  69. N.F. Mott, The Theory of Crystal Rectifiers, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1939, 171(944), p 27–38.

    Google Scholar 

  70. W. Schottky, On the Semiconductor Theory of Junction and Tip Rectifiers, Z. Phys. A Part. Fields, 1939, 113, p 367–414.

    CAS  Google Scholar 

  71. M.H. Dean and U. Stimming, The Electronic Properties of Disordered Passive Films, Corros. Sci., 1989, 29(2–3), p 199–211.

    Article  CAS  Google Scholar 

  72. G. Goodlet, S. Faty, S. Cardoso, P.P. Freitas, A.M. Simoes, M.G. Ferreira, and M.D. Belo, The Electronic Properties of Sputtered Chromium and Iron Oxide Films, Corros. Sci., 2004, 46(6), p 1479–1499.

    Article  CAS  Google Scholar 

  73. S. Ahn and H. Kwon, Diffusivity of Point Defects in the Passive Film on Fe, J. Electroanal. Chem., 2005, 579(2), p 311–319.

    Article  CAS  Google Scholar 

  74. I.C. Guedes, I.V. Aoki, M.J. Carmezim, M.F. Montemor, M.G. Ferreira, and M.D. Belo, The Influence of Copper and Chromium on the Semiconducting Behaviour of Passive Films Formed on Weathering Steels, Thin Solid Films, 2006, 515(4), p 2167–2172.

    Article  CAS  Google Scholar 

  75. L. Hamadou, A. Kadri, and N. Benbrahim, Impedance Investigation of Thermally Formed Oxide Films on AISI 304L Stainless Steel, Corros. Sci., 2010, 52(3), p 859–864.

    Article  CAS  Google Scholar 

  76. M. Stratmann, K. Bohnenkamp, and H.J. Engell, An Electrochemical Study of Phase-Transitions in Rust Layers, Corros. Sci., 1983, 23(9), p 969–985.

    Article  CAS  Google Scholar 

  77. H. Tanaka, R. Mishima, N. Hatanaka, T. Ishikawa, and T. Nakayama, Formation of Magnetite Rust Particles by Reacting Iron Powder with Artificial α-, β-and γ-FeOOH in Aqueous Media, Corros. Sci., 2014, 78, p 384–387.

    Article  CAS  Google Scholar 

  78. S. Nasrazadani and A. Raman, Formation and Transformation of Magnetite (Fe3O4) on Steel Surfaces under Continuous and Cyclic Water Fog Testing, Corrosion (Houston, TX, U. S.), 1993, 49(4), p 294–300.

    Article  CAS  Google Scholar 

  79. T. Ishikawa, Y. Kondo, A. Yasukawa, and K. Kandori, Formation of Magnetite in the Presence of Ferric Oxyhydroxides, Corros. Sci., 1998, 40(7), p 1239–1251.

    Article  CAS  Google Scholar 

  80. A.B. Pattnaik and S. Parida, Materials degradation: metallic materials, In New Horizons in Metallurgy, Materials and Manufacturing, Springer Nature Singapore, Singapore, 2022, p 107–122.

Download references

Acknowledgments

The authors would like to thank the Steel Authority of India Limited (SAIL), Rourkela, for providing the steel samples. Acknowledgment is also due for the use of FESEM and micro-Raman facilities to SAIF, IIT Bombay. The authors are grateful to the National Facility of Texture and OIM for GI-XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smrutiranjan Parida.

Ethics declarations

Conflict of interest

The authors affirm that they have no known financial or interpersonal conflicts that would have appeared to have an impact on the research presented in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 118 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattnaik, A.B., Roy, S., Raja, V.S. et al. Understanding the Structure and Electrochemical Behavior of the Rust Layer Formed on a High-Strength Low-Alloy Structural Steel under Cyclic Exposure to Polluted Marine Atmosphere. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09215-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09215-x

Keywords

Navigation