Skip to main content
Log in

The Use of Strain-Induced Martensitic Transformation Phenomena to Estimate the Surface Plastic Strain Produced by Grit Blasting on Overaged 18Ni Maraging Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, strain-induced martensitic transformation has been used to estimate plastic strain resulting from grit-blasting in 18Ni(300) maraging steel. Overaged samples having high volume fraction of γ-austenite phase were blasted at two different blasting angles (at 45° and 75°), keeping constant all the other process variables. The kinetics of martensitic transformation induced by grit-blasting was treated as a function of the strain, according to the Ludwigson–Berger model, and the Kp value was adopted as an indicator of the mechanical stability of γ-austenite. The model was parametrized through the stretching of tensile testing specimens, at specific deformation levels. The increase on the dislocation density (ρ) resulting from blasting could also be determined by the Williamson–Hall method. The volume fraction of γ-austenite (Vγ) was quantified in both blasted and stretched samples by ex situ XRD analyses. It was found that γ-austenite to α′-martensite phase transformation occurred in blasted and stretched samples, after certain stress levels, despite their strain rate differences. For the process parameters employed, the resulting plastic true strain on the steel surface was in the order of 0.031 and 0.047 for blasting angles of 45° and 75°, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Rohrbach and M. Schmidt, Maraging steels, in Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, 1990, p 793–800.

  2. A.G. dos Reis, D.A.P. Reis, A.J. Abdalla, and J. Otubo, High-Temperature Creep Resistance and Effects on the Austenite Reversion and Precipitation of 18 Ni (300) Maraging Steel, Mater Charact, 2015, 107, p 350–357.

    Article  CAS  Google Scholar 

  3. W. Sha, A. Cerezo, and G.D.W. Smith, Phase Chemistry and Precipitation Reactions in Maraging Steels: Part I. Introduction and Study of Co-Containing C-300 Steel, Metall. Mater. Trans. A, 1993, 24(6), p 1221–1232.

    Article  Google Scholar 

  4. A.M. Hall and C.J. Slunder, The Metallurgy, Behavior and Application of the 18-Percent Nickel Maraging Steels, SP-5051, NASA (Washington, DC), 1968.

  5. F. Habiby, A. ul Haq, and A.Q. Khan, The Properties and Applications of 18% Nickel Maraging Steels, Mater. Technol., 1994, 9(11–12), p 246–252.

    Article  Google Scholar 

  6. R.F. Decker, J.T. Eash, and A.J. Goldman, 18% Nickel Maraging Steel, Trans. ASM, 1962, 55, p 58.

    Google Scholar 

  7. S. Floreen, The Physical Metallurgy of Maraging Steels, Metall. Rev., 1968, 13(1), p 115–128.

    Article  CAS  Google Scholar 

  8. R. Schnitzer, G.A. Zickler, E. Lach, H. Clemens, S. Zinner, T. Lippmann, and H. Leitner, Influence of Reverted Austenite on Static and Dynamic Mechanical Properties of a PH 13-8 Mo Maraging Steel, Mater. Sci. Eng. A, 2010, 527(7–8), p 2065–2070.

    Article  Google Scholar 

  9. U.K. Viswanathan, G.K. Dey, and V. Sethumadhavan, Effects of Austenite Reversion During Overageing on the Mechanical Properties of 18 Ni (350) Maraging Steel, Mater. Sci. Eng. A, 2005, 398(1–2), p 367–372.

    Article  Google Scholar 

  10. M. Ahmed, A. Ali, S.K. Hasnain, F.H. Hashmi, and A.Q. Khan, Magnetic Properties of Maraging Steel in Relation to Deformation and Structural Phase Transformations, Acta Metall. Mater., 1994, 42(3), p 631–638.

    Article  CAS  Google Scholar 

  11. M. Farooque, H. Ayub, A. Ul Haq, and A.Q. Khan, The Formation of Reverted Austenite in 18% Ni 350 Grade Maraging Steel, J. Mater. Sci., 1998, 33(11), p 2927–2930.

    Article  CAS  Google Scholar 

  12. A. Markfeld and A. Rosen, The Effect of Reverted Austenite on the Plastic Deformation of Maraging Steel, Mater. Sci. Eng., 1980, 46(2), p 151–157.

    Article  CAS  Google Scholar 

  13. H. Springer, M. Belde, and D. Raabe, Bulk Combinatorial Design of Ductile Martensitic Stainless Steels through Confined Martensite-to-Austenite Reversion, Mater. Sci. Eng. A, 2013, 582, p 235–244.

    Article  CAS  Google Scholar 

  14. F. Habiby, A. ul Haq, and A.Q. Khan, Influence of Austenite on the Coercive Force, Electrical Resistivity and Hardness of 18% Ni Maraging Steels, Mater. Des., 1992, 13(5), p 259–264.

    Article  CAS  Google Scholar 

  15. F. Qian, J. Sharp, and W.M. Rainforth, Microstructural Evolution of Mn-Based Maraging Steels and Their Influences on Mechanical Properties, Mater. Sci. Eng. A, 2016, 674, p 286–298.

    Article  CAS  Google Scholar 

  16. S.S.M. Tavares, M.R. da Silva, J.M. Neto, M. Pardal, C. Fonseca, and H.F. Abreu, Magnetic Properties of a Ni–Co–Mo–Ti Maraging 350 Steel, J. Alloys Compd., 2004, 373(1–2), p 304–311.

    Article  CAS  Google Scholar 

  17. C. Celada-Casero, H. Kooiker, M. Groen, J. Post, and D. San-Martin, In-Situ Investigation of Strain-Induced Martensitic Transformation Kinetics in an Austenitic Stainless Steel by Inductive Measurements, Metals (Basel), 2017, 7(7), p 271.

    Article  Google Scholar 

  18. W. Sha, H. Leitner, Z. Guo, and W. Xu, Phase transformations in maraging steels, Phase Transformations in Steels. E. Pereloma, S. Edmonds Ed., Elsevier, 2012, p 332–362

    Chapter  Google Scholar 

  19. L. Yuan, D. Ponge, J. Wittig, P. Choi, J.A. Jiménez, and D. Raabe, Nanoscale Austenite Reversion through Partitioning, Segregation and Kinetic Freezing: Example of a Ductile 2 GPa Fe-Cr-C Steel, Acta Mater., 2012, 60(6–7), p 2790–2804.

    Article  CAS  Google Scholar 

  20. M. Ahmed, I. Nasim, H. Ayub, F.H. Hashmi, and A.Q. Khan, Mechanical Stability and Magnetic Properties of Austenite, J. Mater. Sci., 1995, 30(24), p 6257–6266.

    Article  Google Scholar 

  21. Y. Katz, H. Mathias, and S. Nadiv, The Mechanical Stability of Austenite in Maraging Steels, Metall. Trans. A, 1983, 14(4), p 801–808.

    Article  CAS  Google Scholar 

  22. S. Hossein Nedjad, S. Meimandi, A. Mahmoudi, T. Abedi, S. Yazdani, H. Shirazi, and M. Nili Ahmadabadi, Effect of Aging on the Microstructure and Tensile Properties of Fe–Ni–Mn–Cr Maraging Alloys, Mater. Sci. Eng. A, 2009, 501(1–2), p 182–187. https://doi.org/10.1016/j.msea.2008.09.062

    Article  CAS  Google Scholar 

  23. S. Ebnesajjad and A.H. Landrock, Material Surface Preparation Techniques, Adhesives Technology Handbook, S. Ebnesajjad and A.H.B.T.-A.T.H. (Third E. Landrock, Eds., (Boston), Elsevier, 2015, p 35–66.

  24. K. Tosha, J. Lu, B. Guelorget, and E. Nagashima, Shot Peening and Grit Blasting-Effects on Surface Integrity, Icsp9 Shot Peen, Citeseer, 2005, 16, p 400–405.

    Google Scholar 

  25. H. Sato, T. Nishiura, E. Miura-Fujiwara, and Y. Watanabe, Phase Transformation in Fe Alloys Induced by Surface Treatment, Mater. Sci. Forum, 2014, 2012(706–709), p 1996–2001.

    Google Scholar 

  26. A. Eres-Castellanos, C. Garcia-Mateo, and F.G. Caballero, Future Trends on Displacive Stress and Strain Induced Transformations in Steels, Metals (Basel), 2021, 11(2), p 299.

    Article  CAS  Google Scholar 

  27. E.S. Perdahcioglu, H.J.M. Geijselaers, and M. Groen, Influence of Plastic Strain on Deformation-Induced Martensitic Transformations, Scr. Mater., 2008, 58(11), p 947–950.

    Article  CAS  Google Scholar 

  28. D. Fahr, Stress- and Strain-Induced Formation of Martensite and Its Effects on Strength and Ductility of Metastable Austenitic Stainless Steels, Metall. Trans., 1971, 2(7), p 1883–1892.

    Article  CAS  Google Scholar 

  29. M. Kobayashi, K. Ueno, A. Kamada, and T. Nakane, Transformation-Induced Plastic Behaviour of 18%Ni Maraging Steels, Met. Technol., 1981, 8(1), p 27–32.

    Article  CAS  Google Scholar 

  30. A. Das, P.C. Chakraborti, S. Tarafder, and H.K.D.H. Bhadeshia, Analysis of Deformation Induced Martensitic Transformation in Stainless Steels, Mater. Sci. Technol., 2011, 27(1), p 366–370.

    Article  Google Scholar 

  31. M.J. Sohrabi, M. Naghizadeh, and H. Mirzadeh, Deformation-Induced Martensite in Austenitic Stainless Steels: A Review, Arch. Civ. Mech. Eng., 2020, 20(4), p 124.

    Article  Google Scholar 

  32. K. Spencer, J.D. Embury, K.T. Conlon, M. Véron, and Y. Bréchet, Strengthening via the Formation of Strain-Induced Martensite in Stainless Steels, Mater. Sci. Eng. A, 2004, 387–389(1–2 SPEC. ISS.), p 873–881. https://doi.org/10.1016/j.msea.2003.11.084

    Article  CAS  Google Scholar 

  33. B. He, On the Factors Governing Austenite Stability: Intrinsic versus Extrinsic, Materials (Basel), 2020, 13(15), p 3440.

    Article  CAS  Google Scholar 

  34. J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Effect of Strain Rate on the Strain-Induced γ → Α′-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2005, 36(2), p 421–432.

    Article  Google Scholar 

  35. S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith, Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior, Metall. Trans. A, 1982, 13(4), p 619–626.

    Article  CAS  Google Scholar 

  36. A.W. Momber and Y.C. Wong, Overblasting Effects on Surface Properties of Low-Carbon Steel, J. Coatings Technol. Res., 2005, 2(6), p 453–461.

    Article  CAS  Google Scholar 

  37. S.K. Asl and M.H. Sohi, Effect of Grit-Blasting Parameters on the Surface Roughness and Adhesion Strength of Sprayed Coating, Surf. Interface Anal., 2010, 42(6–7), p 551–554.

    Article  CAS  Google Scholar 

  38. W. Czepułkowska, E. Wołowiec-Korecka, and L. Klimek, The Condition of Ni-Cr Alloy Surface After Abrasive Blasting with Various Parameters, J. Mater. Eng. Perform., 2020, 29(3), p 1439–1444.

    Article  Google Scholar 

  39. T. Ghara, S. Paul, and P.P. Bandyopadhyay, Effect of Grit Blasting Parameters on Surface and Near-Surface Properties of Different Metal Alloys, J. Therm. Spray Technol., 2021, 30(1–2), p 251–269.

    Article  CAS  Google Scholar 

  40. G.D. Byrne, L. O’Neill, B. Twomey, and D.P. Dowling, Comparison between Shot Peening and Abrasive Blasting Processes as Deposition Methods for Hydroxyapatite Coatings onto a Titanium Alloy, Surf. Coatings Technol., 2013, 216, p 224–231.

    Article  CAS  Google Scholar 

  41. S.A. Meguid, G. Shagal, and J.C. Stranart, Finite Element Modelling of Shot-Peening Residual Stresses, J. Mater. Process. Technol., 1999, 92–93, p 401–404.

    Article  Google Scholar 

  42. K. Schiffner and C. Droste, Simulation of Residual Stresses by Shot Peening, Comput. Struct., 1999, 72(1), p 329–340.

    Article  Google Scholar 

  43. K. Poorna Chander, M. Vashista, K. Sabiruddin, S. Paul, and P.P. Bandyopadhyay, Effects of Grit Blasting on Surface Properties of Steel Substrates, Mater. Des., 2009, 30(8), p 2895–2902.

    Article  CAS  Google Scholar 

  44. M. Umemoto, Y. Todaka, and K. Tsuchiya, Formation of Nanocrystalline Structure in Steels by Air Blast Shot Peening, Mater. Trans., 2003, 44(7), p 1488–1493.

    Article  CAS  Google Scholar 

  45. J.L. Liu, M. Umemoto, Y. Todaka, and K. Tsuchiya, Formation of a Nanocrystalline Surface Layer on Steels by Air Blast Shot Peening, J. Mater. Sci., 2007, 42(18), p 7716–7720.

    Article  CAS  Google Scholar 

  46. X.Y. Wang and D.Y. Li, Mechanical, Electrochemical and Tribological Properties of Nano-Crystalline Surface of 304 Stainless Steel, Wear, 2003, 255(7), p 836–845.

    Article  CAS  Google Scholar 

  47. M. Multigner, S. Ferreira-Barragáns, E. Frutos, M. Jaafar, J. Ibáñez, P. Marín, M.T. Pérez-Prado, G. González-Doncel, A. Asenjo, and J.L. González-Carrasco, Superficial Severe Plastic Deformation of 316 LVM Stainless Steel through Grit Blasting: Effects on Its Microstructure and Subsurface Mechanical Properties, Surf. Coat. Technol., 2010, 205(7), p 1830–1837.

    Article  CAS  Google Scholar 

  48. A. Lara, M. Roca, S. Parareda, N. Cuadrado, J. Calvo, and D. Casellas, Effect of Sandblasting on Low and High-Cycle Fatigue Behaviour after Mechanical Cutting of a Twinning-Induced Plasticity Steel, MATEC Web Conf., 2018, 165, p 4–11.

    Article  Google Scholar 

  49. B. Arifvianto, M. Mahardika, U.A. Salim, and S. Suyitno, Comparison of Surface Characteristics of Medical-Grade 316L Stainless Steel Processed by Sand-Blasting, Slag Ball-Blasting and Shot-Blasting Treatments, J. Eng. Technol. Sci., 2020, 52(1), p 1.

    Article  CAS  Google Scholar 

  50. D.J. Buchanan and R. John, Residual Stress Redistribution in Shot Peened Samples Subject to Mechanical Loading, Mater. Sci. Eng. A, 2014, 615, p 70–78.

    Article  CAS  Google Scholar 

  51. P.S. Prevéy, The Effect of Cold Work on the Thermal Stability of Residual Compression in Surface Enhanced IN718, ASM Proc. Heat Treat., 2000, 1, p 426–434.

    Google Scholar 

  52. P.S. Prevéy, Residual Stress in Design, Process and Materials Selection, Ed. WB Young, Am. Soc. Met., Met. Park. Ohio, 1987, p 11–19.

  53. P.S. Prevéy, The Measurement of Subsurface Residual Stress and Cold Work Distributions in Nickel Base Alloys, Residual Stress Des. Process. Mater. Sel., 1987, p 11–19.

  54. T. Kim, H. Lee, S. Jung, and J.H. Lee, A 3D FE Model with Plastic Shot for Evaluation of Equi-Biaxial Peening Residual Stress Due to Multi-Impacts, Surf. Coatings Technol., 2012, 206(13), p 3125–3136.

    Article  CAS  Google Scholar 

  55. K.A. Soady, B.G. Mellor, G.D. West, G. Harrison, A. Morris, and P.A.S. Reed, Evaluating Surface Deformation and near Surface Strain Hardening Resulting from Shot Peening a Tempered Martensitic Steel and Application to Low Cycle Fatigue, Int. J. Fatigue, 2013, 54, p 106–117. https://doi.org/10.1016/j.ijfatigue.2013.03.019

    Article  CAS  Google Scholar 

  56. J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, The Determination of Yield Strength from Hardness Measurements, Metall. Trans., 1971, 2(7), p 1979–1983.

    Article  CAS  Google Scholar 

  57. E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17(6), p 888–893.

    Article  CAS  Google Scholar 

  58. D.C. Ludwigson and J.A. Berger, Plastic Behaviour of Metastable Austenitic Stainless Steels, J Iron Steel Inst, 1969, 207(1), p 63–69.

    CAS  Google Scholar 

  59. T. Narutani, Effect of Deformation-Induced Martensitic Transformation on the Plastic Behavior of Metastable Austenitic Stainless Steel, Mater. Trans. JIM, 1989, 30(1), p 33–45.

    Article  CAS  Google Scholar 

  60. G.K. Williamson and R.E. Smallman, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1(1), p 34–46.

    Article  CAS  Google Scholar 

  61. H. Guechichi and L. Castex, Fatigue Limits Prediction of Shot Peened Materials, Fatigue Fract. Steels, 2006, 172, p 221–228.

    Google Scholar 

  62. P. Rozenak, L. Zevin, and D. Eliezer, Hydrogen Effects on Phase Transformations in Austenitic Stainless Steels, J. Mater. Sci., 1984, 19(2), p 567–573.

    Article  CAS  Google Scholar 

  63. M. Morawiec and A. Grajcar, Some Aspects of the Determination of Retained Austenite Using the Rietveld Refinement, J. Achiev. Mater. Manuf. Eng., 2017, 1(80), p 11–17. https://doi.org/10.5604/01.3001.0010.1442

    Article  Google Scholar 

  64. J.M. Pardal, S.S.M. Tavares, M.P. CindraFonseca, H.F.G. Abreu, and J.J.M. Silva, Study of the Austenite Quantification by X-Ray Diffraction in the 18Ni-Co-Mo-Ti Maraging 300 Steel, J. Mater. Sci., 2006, 41(8), p 2301–2307.

    Article  CAS  Google Scholar 

  65. O. Matsumura, Y. Sakuma, and H. Takechi, Trip and Its Kinetic Aspects in Austempered 0.4C–1.5Si-0.8Mn Steel, Scr. Metall., 1987, 21(10), p 1301–1306.

    Article  CAS  Google Scholar 

  66. R.E. Smallman and K.H. Westmacott, Stacking Faults in Face-Centred Cubic Metals and Alloys, Philos. Mag., 1957, 2(17), p 669–683.

    Article  CAS  Google Scholar 

  67. A. Sharma, A. Agarwal, M. Acharya, and S.C. Sharma, Optimization of Aging Cycle of Stainless Maraging Steel Using Dilatometric and Differential Scanning Calorimetric Analysis to Improve Its Strength, 2015, 831, p 147–150.

  68. A.G. Reis, D.A.P. Reis, A.J. Abdalla, J. Otubo, and H.R.Z. Sandim, A Dilatometric Study of the Continuous Heating Transformations in Maraging 300 Steel, IOP Conf. Ser. Mater. Sci. Eng., 2015, 97(1).

  69. J. Post, “On the Constitutive Behaviour of Sandvik Nanoflex: Modelling, Experiments and Multi-Stage Forming,” University of Twente, 2004, https://ris.utwente.nl/ws/portalfiles/portal/6087584/thesis_Post.pdf.

  70. Z.H. Cai, H. Ding, R.D.K. Misra, and H. Kong, Unique Serrated Flow Dependence of Critical Stress in a Hot-Rolled Fe–Mn–Al–C Steel, Scr. Mater., 2014, 71, p 5–8. https://doi.org/10.1016/j.scriptamat.2013.09.009

    Article  CAS  Google Scholar 

  71. V. Govindaraj, P. Hodgson, R.P. Singh, and H. Beladi, The Effect of Austenite Reversion on the Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2021, 828(9), p 142097.

    Article  CAS  Google Scholar 

  72. S. Shamsdini, M.H. Ghoncheh, M. Sanjari, H. Pirgazi, B.S. Amirkhiz, L. Kestens, and M. Mohammadi, Plastic Deformation throughout Strain-Induced Phase Transformation in Additively Manufactured Maraging Steels, Mater. Des., 2021, 198, p 109289.

    Article  CAS  Google Scholar 

  73. G.A. Zickler, R. Schnitzer, R. Hochfellner, T. Lippmann, S. Zinner, and H. Leitner, Transformation of Reverted Austenite in a Maraging Steel under External Loading: An In-Situ X-Ray Diffraction Study Using High-Energy Synchrotron Radiation, Int. J. Mater. Res., 2009, 100(11), p 1566–1573.

    Article  CAS  Google Scholar 

  74. Y. Ye, J. Li, X. Lv, and L. Liu, Study on Failure Mechanism and Phase Transformation of 304 Stainless Steel during Erosion Wear, Metals (Basel), 2020, 10(11), p 1427.

    Article  CAS  Google Scholar 

  75. T. Ghara, S. Paul, and P.P. Bandyopadhyay, Influence of Grit Blasting on Residual Stress Depth Profile and Dislocation Density in Different Metallic Substrates, Metall. Mater. Trans. A, 2021, 52(1), p 65–81.

    Article  CAS  Google Scholar 

  76. P.J. Ferreira, J.B. VanderSande, M.A. Fortes, and A. Kyrolainen, Microstructure Development during High-Velocity Deformation, Metall. Mater. Trans. A, 2004, 35(10), p 3091–3101.

    Article  Google Scholar 

  77. M. Multigner, E. Frutos, J.L. González-Carrasco, J.A. Jiménez, P. Marín, and J. Ibáñez, Influence of the Sandblasting on the Subsurface Microstructure of 316LVM Stainless Steel: Implications on the Magnetic and Mechanical Properties, Mater. Sci. Eng. C, 2009, 29(4), p 1357–1360.

    Article  CAS  Google Scholar 

  78. B.J. Griffiths, D.T. Gawne, and G. Dong, The Erosion of Steel Surfaces by Grit-Blasting as a Preparation for Plasma Spraying, Wear, 1996, 194(1–2), p 95–102. https://doi.org/10.1016/0043-1648(95)06798-1

    Article  CAS  Google Scholar 

  79. S. Geng, J. Sun, and L. Guo, Effect of Sandblasting and Subsequent Acid Pickling and Passivation on the Microstructure and Corrosion Behavior of 316L Stainless Steel, Mater. Des., 2015, 88, p 1–7. https://doi.org/10.1016/j.matdes.2015.08.113

    Article  CAS  Google Scholar 

  80. M. Zhang, J. Wang, Y. Zhu, L. Zhang, and P. Jin, Ex-Situ EBSD Analysis of Hot Deformation Behavior and Microstructural Evolution of Mg–1Al–6Y Alloy via Uniaxial Compression, Mater. Sci. Eng. A, 2020, 775, 138978. https://doi.org/10.1016/j.msea.2020.138978

    Article  CAS  Google Scholar 

  81. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Effect of Microstructure on Retained Austenite Stability and Work Hardening of TRIP Steels, Mater. Sci. Eng. A, 2011, 528(13–14), p 4516–4521.

    Article  Google Scholar 

  82. F.F. Conde, J.D. Escobar, J.P. Oliveira, A.L. Jardini, W.W. Bose Filho, and J.A. Avila, Austenite Reversion Kinetics and Stability during Tempering of an Additively Manufactured Maraging 300 Steel, Addit. Manuf., 2019, 29(October 2018), p 100804.

    CAS  Google Scholar 

  83. S.A. Meguid, G. Shagal, and J.C. Stranart, 3D FE Analysis of Peening of Strain-Rate Sensitive Materials Using Multiple Impingement Model, Int. J. Impact Eng, 2002, 27(2), p 119–134.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Instituto Tecnológico de Aeronáutica (ITA), in special to Professor A.S. Antunes and to the MSc. Filipe Caldatto Dalan for the FEG-SEM analysis, to the Instituto de Estudos Avançados (IEAv) in special to DSc. Davi Neves, for the XRD analysis, for the Institute de Aeronáutia e Espaço (IAE) for the metallographic preparation, and for the Núcleo de Apoio à Pesquisa em Ciência e Engenharia de Materiais (NAPCEM) of the Federal University of São Paulo for the XRD, Dilatometry and SEM analysis

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Fortes Palau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palau, J.C.F., Travessa, D.N. The Use of Strain-Induced Martensitic Transformation Phenomena to Estimate the Surface Plastic Strain Produced by Grit Blasting on Overaged 18Ni Maraging Steel. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09176-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09176-1

Keywords

Navigation