Skip to main content
Log in

The Corrosion Performance of Ti6Al4V Alloy after Dry Heat Sterilization with Respect to the Initial Microstructure

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Beta-annealing heat treatments were performed on Ti6Al4V samples at 1050 and 1100 °C for 15 and 60 min and at two different cooling rates. The corrosion behavior, before and after dry heat sterilization, was evaluated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). Results show that the increase in annealing time from 15 to 60 min increases the α-lamella thickness from 1.3 to 2.1 µm. The PDP and EIS results showed that the furnace cooled beta-annealed sample at 1050 °C for 15 min, so-called 1050-15-F, with the finest microstructural features, had the lowest corrosion rate equal to 0.8 × 10−2 mm/year. The reduction of samples' corrosion rate after sterilization was highly dependent on the initial microstructure before sterilization. Compared to other samples, 1050-15-F sample with the highest naturally oxide layer thickness before sterilization showed the lowest %reduction of ≈ 52% in its corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. Prakash and M.S. Uddin, Surface Modification of β-Phase Ti Implant by Hydroaxyapatite Mixed Electric Discharge Machining to Enhance the Corrosion Resistance and In-Vitro Bioactivity, Surf. Coat. Technol., 2017, 326, p 134-145.

    Article  CAS  Google Scholar 

  2. J. Chávez, O. Jiménez Alemán, M. Flores Martínez, H.J. Vergara-Hernández, L. Olmos, P. Garnica-González , and D. Bouvard, Characterization of Ti6Al4V-Ti6Al4V/30Ta Bilayer Components Processed by Powder Metallurgy for Biomedical Applications, Metals Mater. Int.., 2020, 26, p 205-220.

    Article  Google Scholar 

  3. C. Bai, P. Li, T. Gang, J. Li, M. Wei, Y. Huang, and L. Chen, Influence of Processing Technology on Electrochemical Corrosion Behavior of Ti-6Al-4V Alloys, Corrosion, 2021, 77(4), p 402-412.

    Article  Google Scholar 

  4. N. Eshawish, S. Malinov, W. Sha, and P. Walls, Microstructure and Mechanical Properties of Ti-6Al-4V Manufactured by Selective Laser Melting after Stress Relieving, Hot Isostatic Pressing Treatment, and Post-Heat Treatment, J. Mater. Eng. Perform., 2021, 30, p 5290-5296.

    Article  CAS  Google Scholar 

  5. H. Ji, Z. Peng, X. Huang, B. Wang, W. Xiao, and S. Wang, Characterization of the Microstructures and Dynamic Recrystallization Behavior of Ti-6Al-4V Titanium Alloy through Experiments and Simulations, J. Mater. Eng. Perform., 2021, 30, p 8257-8275.

    Article  CAS  Google Scholar 

  6. A.L. Pilchak, G.A. Sargent, and S.L. Semiatin, Early Stages of Microstructure and Texture Evolution during Beta Annealing of Ti-6Al-4V, Metall. Mater. Trans. A, 2018, 49, p 908-919. https://doi.org/10.1007/s11661-017-4444-8

    Article  CAS  Google Scholar 

  7. Y. Xu, Y. Lu, K.L. Sundberg, J. Liang, and R.D. Sisson, Effect of Annealing Treatments on the Microstructure, Mechanical Properties and Corrosion Behavior of Direct Metal Laser Sintered Ti-6Al-4V, J. Mater. Eng. Perform., 2017, 26(6), p 2572-2582.

    Article  CAS  Google Scholar 

  8. M. Waqas, D. He, Y. Liu, S. Riaz, and F. Afzal, Effect of Heat Treatment on Microstructure and Mechanical Properties of Ti6Al4V Alloy Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2023, 32(2), p 680-694.

    Article  CAS  Google Scholar 

  9. R. Sabban, S. Bahl, K. Chatterjee, and S. Suwas, Globularization Using Heat Treatment in Additively Manufactured Ti-6Al-4V for High Strength and Toughness, Acta Mater., 2019, 162, p 239-254.

    Article  CAS  Google Scholar 

  10. J.A. Chafino, K. Yamanaka, F. Mercier, P. Rivory, S. Balvay, D.J. Hartmann, A. Chiba, and D. Fabregue, The Influence of Temperature during Water-Quench Rapid Heat Treatment on the Microstructure, Mechanical Properties and Biocompatibility of Ti[Sbnd]6Al[Sbnd]4V ELI Alloy, J. Mech. Behav. Biomed. Mater., 2019, 96, p 144-151. https://doi.org/10.1016/j.jmbbm.2019.04.024

    Article  CAS  Google Scholar 

  11. S. Sartori, L. Pezzato, M. Dabalà, T. Maurizi Enrici, A. Mertens, A. Ghiotti, and S. Bruschi, Surface Integrity Analysis of Ti6Al4V after Semi-Finishing Turning under Different Low-Temperature Cooling Strategies, J. Mater. Eng. Perform., 2018, 27, p 4810-4818.

    Article  CAS  Google Scholar 

  12. I. Ratha, P. Datta, N.C. Reger, H. Das, V.K. Balla, K.B. Devi, M. Roy, S.K. Nandi, and B. Kundu, In Vivo Osteogenesis of Plasma Sprayed Ternary-Ion Doped Hydroxyapatite Coatings on Ti6Al4V for Orthopaedic Applications, Ceram. Int., 2022, 48(8), p 11475-11488.

    Article  CAS  Google Scholar 

  13. J. Cui, L. Xia, K. Lin, and X. Wang, In Situ Construction of a Nano-Structured Akermanite Coating for Promoting Bone Formation and Osseointegration of Ti-6Al-4V Implants in a Rabbit Osteoporosis Model, J. Mater. Chem. B, 2021, 9(46), p 9505-9513.

    Article  CAS  Google Scholar 

  14. D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom, and D. Buser, Bone Response to Unloaded and Loaded Titanium Implants with a Sandblasted and Acid-Etched Surface: A Histometric Study in the Canine Mandible, J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater., 1998, 40(1), p 1-1.

    Article  CAS  Google Scholar 

  15. L. Huang, B. Cai, Y. Huang, J. Wang, C. Zhu, K. Shi, Y. Song, G. Feng, L. Liu, and L. Zhang, Comparative Study on 3D Printed Ti6Al4V Scaffolds with Surface Modifications Using Hydrothermal Treatment and Microarc Oxidation to Enhance Osteogenic Activity, ACS Omega, 2021, 6(2), p 1465-1476.

    Article  CAS  Google Scholar 

  16. C.A. Maestro, A.H. Bueno, and A.M. de Sousa Malafaia, Cyclic Thermal Oxidation Evaluation to Improve Ti6Al4V Surface in Applications as Biomaterial, J. Mater. Eng. Perform., 2019, 15(28), p 4991-4997.

    Article  Google Scholar 

  17. M. Haim Zada, A. Kumar, O. Elmalak, G. Mechrez, and A.J. Domb, Effect of Ethylene Oxide and Gamma (γ-) Sterilization on the Properties of a PLCL Polymer Material in Balloon Implants, ACS Omega, 2019, 4(25), p 21319-21326.

    Article  CAS  Google Scholar 

  18. A.M. Matuska, and P.S. McFetridge, The Effect of Terminal Sterilization on Structural and Biophysical Properties of a Decellularized Collagen-Based Scaffold; Implications for Stem Cell Adhesion, J. Biomed. Mater. Res. Part B Appl. Biomater., 2015, 103(2), p 397-406.

    Article  Google Scholar 

  19. L.M. Antonini, M.C. de Fraga, G.C. Reilly, R. Owen, and A.S. Takimi, Effect of Sterilization Processes on Nanostructured Ti6Al4V Surfaces Obtained by Electropolishing, J. Mater. Res., 2019, 34(8), p 1439-1446.

    Article  CAS  Google Scholar 

  20. J. Faure, A. Balamurugan, H. Benhayoune, P. Torres, G. Balossier, and J.M.F. Ferreira, Morphological and Chemical Characterisation of Biomimetic Bone like Apatite Formation on Alkali Treated Ti6Al4V Titanium Alloy, Mater. Sci. Eng. C, 2009, 29(4), p 1252-1257.

    Article  CAS  Google Scholar 

  21. A. Kumar, B. Bhattacharjee, D.N. Sangeetha, V. Subramanian, and B. Venkatraman, Evaluation of Filtration Effectiveness of Various Types of Facemasks Following with Different Sterilization Methods, J. Indus. Text., 2022, 51(2_suppl), p 3430S-S3465.

    Article  CAS  Google Scholar 

  22. J.H. Park, R. Olivares-Navarrete, R.E. Baier, A.E. Meyer, R. Tannenbaum, B.D. Boyan, and Z. Schwartz, Effect of Cleaning and Sterilization on Titanium Implant Surface Properties and Cellular Response, Acta Biomater., 2012, 8(5), p 1966-1975.

    Article  CAS  Google Scholar 

  23. T. Guo, N.A.K. Oztug, P. Han, S. Ivanovski, and K. Gulati, Influence of Sterilization on the Performance of Anodized Nanoporous Titanium Implants, Mater. Sci. Eng. C, 2021, 130, p 112429.

    Article  CAS  Google Scholar 

  24. M. Fousová, D. Vojtěch, J. Kubásek, E. Jablonská, and J. Fojt, Promising Characteristics of Gradient Porosity Ti-6Al-4V Alloy Prepared by SLM Process, J. Mech. Behav. Biomed. Mater., 2017, 69, p 368-376.

    Article  Google Scholar 

  25. C. de Formanoir, A. Brulard, S. Vivès, G. Martin, F. Prima, S. Michotte, E. Rivière, A. Dolimont, and S. Godet, A Strategy to Improve the Work-Hardening Behavior of Ti-6Al-4V Parts Produced by Additive Manufacturing, Mater. Res. Lett., 2017, 5(3), p 201-208. https://doi.org/10.1080/21663831.2016.1245681

    Article  CAS  Google Scholar 

  26. J. Dai, J. Xia, L. Chai, K.L. Murty, N. Guo, and M.R. Daymond, Correlation of Microstructural, Textural Characteristics and Hardness of Ti-6Al-4V Sheet β-Cooled at Different Rates, J. Mater. Sci., 2020, 55(19), p 8346-8362.

    Article  CAS  Google Scholar 

  27. N.C. Levkulich, S.L. Semiatin, E.J. Payton, S. Srivatsa, and A.L. Pilchak, An Investigation of the Development of Coarse Grains during β Annealing of Hot-Forged Ti-6Al-4V, Metall. Mater. Trans. A, 2021, 52(4), p 1353-1367.

    Article  CAS  Google Scholar 

  28. N.E. Byres, J.Q. da Fonseca, C.S. Daniel, J. Donoghue, A.E. Davis, P. Shanthraj, B. Dod, and P.B. Prangnell, The Evolution of Abnormally Coarse Grain Structures in Beta-Annealed Ti-6Al\%-4V\% Rolled Plates, Obs. Situ Invest. Acta Mater., 2021, 221, p 117362.

    Article  CAS  Google Scholar 

  29. A. Rahimi, and M. Shamanian, The PC-GTAW of Ti-6Al-4V Thin Sheets and Its Effects on Mechanical and Microstructural Properties, Metallogr. Microstruct. Anal., 2019, 8(6), p 871-879.

    Article  CAS  Google Scholar 

  30. M. Amirnejad, M. Rajabi, and R. Jamaati, Importance of Individual Evaluation of Crystallographic Texture and Microstructure Effects on Biocompatibility and Corrosion Performance of Ti6Al4V Alloy, Metals Mater. Int., 2023, 29(2), p 343-356.

    Article  CAS  Google Scholar 

  31. A. Sharma, M.C. Oh, J.T. Kim, A.K. Srivastava, and B. Ahn, Investigation of Electrochemical Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy for Medical Implants in Different Electrolytes, J. Alloys Compd., 2020, 830, p 154620. https://doi.org/10.1016/j.jallcom.2020.154620

    Article  CAS  Google Scholar 

  32. J.W. Nicholson, Titanium Alloys for Dental Implants: A Review, Prosthesis, 2020, 2(2), p 100-116.

    Article  Google Scholar 

  33. P. Lu, M. Wu, X. Liu, W. Duan, and J. Han, Study on Corrosion Resistance and Bio-Tribological Behavior of Porous Structure Based on the SLM Manufactured Medical Ti6Al4V, Met. Mater. Int., 2020, 26(8), p 1182-1191.

    Article  CAS  Google Scholar 

  34. ASTM G102-89, “Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements,” ASTM International, West Conshohocken, USA, 2004, pp. 1-7.

  35. N. Zaveri, M. Mahapatra, A. Deceuster, Y. Peng, L. Li, and A. Zhou, Corrosion Resistance of Pulsed Laser-Treated Ti-6Al-4V Implant in Simulated Biofluids, Electrochim. Acta, 2008, 53(15), p 5022-5032.

    Article  CAS  Google Scholar 

  36. S. Gudić, L. Vrsalović, D. Kvrgić, and A. Nagode, Electrochemical Behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution, Materials, 2021, 14(24), p 7495.

    Article  Google Scholar 

  37. M. de Pauli, A.M.C. Gomes, R.L. Cavalcante, R.B. Serpa, C.P.S. Reis, F.T. Reis, and M.L. Sartorelli, Capacitance Spectra Extracted from EIS by a Model-Free Generalized Phase Element Analysis, Electrochim., 2019, 320, p 134366.

    Article  Google Scholar 

  38. L. Zha, H. Li, and N. Wang, In Situ Electrochemical Study of the Growth Kinetics of Passive Film on TC11 Alloy in Sulfate Solution at 300 °C/10 MPa, Materials, 2020, 13(5), p 1135. https://doi.org/10.1016/j.corsci.2020.109100

    Article  CAS  Google Scholar 

  39. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods, J. Nanomater., 2014, 2014, p 1-9.

    Article  Google Scholar 

  40. A.C. Alves, F. Wenger, P. Ponthiaux, J.P. Celis, A.M. Pinto, L.A. Rocha, and J.C.S. Fernandes, Corrosion Mechanisms in Titanium Oxide-Based Films Produced by Anodic Treatment, Electrochim. Acta, 2017, 234, p 16-27.

    Article  CAS  Google Scholar 

  41. M.E. Orazem, and B. Tribollet, Electrochemical Impedance Spectroscopy, 2nd ed. Wiley, London, 2017.

    Book  Google Scholar 

  42. M. Yang, W. Zhang, J. Chen, Y. Li, T. Huang, N. Tang, and P. Li, Corrosion and Electrochemical Impedance Properties of Ti6Al4V Alloy and Ti-3Zr-2Sn-3Mo-25Nb Alloy Treated by Micro-Arc Oxidation Process, Int. J. Electrochem. Sci., 2019, 14, p 8699.

    Article  CAS  Google Scholar 

  43. A. Sharma, M.C. Oh, J.T. Kim, A.K. Srivastava, and B. Ahn, Investigation of electrochemical corrosion behavior of additive manufactured Ti-6Al-4V alloy for medical implants in different electrolytes, J. Alloys Compound., 2020, 25(830), p 154620.

    Article  Google Scholar 

  44. Y. Luo, Y. Deng, L. Guan, L. Ye, X. Guo, and A. Luo, Effect of Grain Size and Crystal Orientation on the Corrosion Behavior of As-Extruded Mg-6Gd-2Y-0.2 Zr Alloy, Corros. Sci., 2020, 164, p 108338.

    Article  CAS  Google Scholar 

  45. K.D. Ralston, N. Birbilis, and C.H.J.J. Davies, Revealing the Relationship between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63(12), p 1201-1204. https://doi.org/10.1016/j.scriptamat.2010.08.035

    Article  CAS  Google Scholar 

  46. M.P. Chávez-Díaz, R.M. Luna-Sánchez, J. Vazquez-Arenas, L. Lartundo-Rojas, J.M. Hallen, and R. Cabrera-Sierra, XPS and EIS Studies to Account for the Passive Behavior of the Alloy Ti-6Al-4V in Hank’s Solution, J. Solid State Electrochem., 2019, 23(11), p 3187-3196.

    Article  Google Scholar 

  47. R.O. Hussin, K.L. Choy, and X.H. Hou, Growth of TiO2 Thin Films by Atomic Layer Deposition (ALD), Adv. Mater. Res., 2016, 2(1133), p 352-356.

    Article  Google Scholar 

  48. S. Kumar, T.S.N.S. Narayanan, S.G.S. Raman, and S.K. Seshadri, Thermal Oxidation of CP Ti—An Electrochemical and Structural Characterization, Mater Charact, 2010, 61(6), p 589-597.

    Article  CAS  Google Scholar 

  49. Y.-F. Jia, R.-J. Pan, P.-Y. Zhang, Z.-T. Sun, X.-R. Chen, X.-C. Zhang, and X.-J. Wu, Enhanced Surface Strengthening of Titanium Treated by Combined Surface Deep-Rolling and Oxygen Boost Diffusion Technique, Corros. Sci., 2019, 157, p 256-267.

    Article  CAS  Google Scholar 

  50. K. Ma, R. Zhang, J. Sun, and C. Liu, Oxidation Mechanism of Biomedical Titanium Alloy Surface and Experiment, Int. J. Corros, 2020, 2020, 1678615. https://doi.org/10.1155/2020/1678615.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rajabi.

Ethics declarations

Conflict of interest

The authors have stated explicitly that there are no conflicts of interest in connection with this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domehri, K., Rajabi, M. & Amirnejad, M. The Corrosion Performance of Ti6Al4V Alloy after Dry Heat Sterilization with Respect to the Initial Microstructure. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-023-09085-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09085-9

Keywords

Navigation