Skip to main content

Advertisement

Log in

Taguchi-Based Experimental Investigation and Modeling of 3D-Printed PEEK Parts as Biomedical Implants using Fused Deposition Modeling for Improving Mechanical Strength and Surface Quality

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing is a form of additive manufacturing that employs digital model data to build real objects by layering on materials. The technology has found use in the automotive, aerospace, and biomedical industries. Fused deposition modeling (FDM) is a popular 3D printing technique used for production of thermoplastic polymer materials. In this work, polyether ether ketone (PEEK) material being used a biomaterial for a biomedical implant is investigated to evaluate improvement of mechanical strength and surface quality of the print. Infill density (ID), infill pattern (IP), and printing speed (PS) are considered as process parameters to study their influence on responses, viz., surface roughness (SR), ultimate tensile strength (UTS), and Rockwell hardness (RH). The developed predictive models for three responses are found accurate with higher values of R2 and R2 (adj) and maximum average error found as 1.38% for hardness. The infill pattern, followed by layer height, has the greatest impact on the performance measures. Increased infill density and low printing speed produce strong part having maximum ultimate tensile strength. According to a SEM image, the best material pack to generate strong specimens with the highest mechanical strength is one that has the highest infill density and the slowest printing speed (UTS = 59.09 MPa; RH = 64.31). Parametric optimization to optimize single and multi-responses was carried out using desirability analysis (DA) and the results show that 72.93% infill density, printing speed of 25 mm/sec, and gyroid pattern having composite desirability value of 0.8884 are found optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I.V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, Polyether Ether Ketone (PEEK) for Medical Applications, J. Mater. Sci. Mater. Med., 2016, 27, p 118.

    Article  Google Scholar 

  2. R. Ghomi, E. Eshkalak, S.K. Singh, S. Chinnappan, A. Ramakrishna, and R. Narayan, Fused Filament Printing of Specialized Biomedical Devices: A State-of-the Art Review of Technological Feasibilities with PEEK, Rapid Prototyp. J.urnal, 2020, 27(3), p 592–616.

    Article  Google Scholar 

  3. S.M. Kurtz, Synthesis and Processing of PEEK for Surgical Implants. PEEK Biomaterials Handbook, 9–22 2012.

  4. X. Yang, Q. Wang, Y. Zhang, H. He, S. Xiong, P. Chen, C. Li, L. Wang, G. Lu, and Y. Xu, A Dual-Functional PEEK Implant Coating for Anti-Bacterial and Accelerated Osseointegration, Colloids Surfaces B: Biointerfaces, 2023, 224, p 113196.

    Article  CAS  Google Scholar 

  5. S. He, C. Duan, S. Wang, Y. Yu, Y.K. Chan, X. Shi, J. Huang, S. Wang, S. Peng, and Y. Deng, Fusion Peptide-Engineered Polyetheretherketone Implants with Photo-Assisted Anti-Pathogen and Enhanced Angiogenesis for In Vivo Osseointegrative Fixation, Chem. Eng. J., 2022, 446, p 137453.

    Article  CAS  Google Scholar 

  6. B.N. Turner, R. Strong, and S.A. Gold, A Review of Melt Extrusion Additive Manufacturing Processes: Process Design and Modelling, Rapid Prototyping Journal, 2014, 20(3), p 192–204.

    Article  Google Scholar 

  7. Rehekampff, C., Schroeffer, A., Irlinger, F., Lueth, and T. C., Influence of Infill Structures and Process Parameters on the Tensile Strength of 3D-printed PEEK Parts. IEEE International Conference on Robotics and Biomimetics (ROBIO),1633-1338, Dali, China 2019.

  8. M. Moradi, M. Karamimoghadam, S. Meiabadi, S. Rasool, G. Casalino, M. Shamsborhan, P.K. Sebastian, A. Poulose, A. Shaiju, and M. Rezayat, Optimizing Layer Thickness and Width for Fused Filament Fabrication of Polyvinyl Alcohol in Three-Dimensional Printing and Support Structures, Machines, 2023, 11, p 844. https://doi.org/10.3390/machines11080844

    Article  Google Scholar 

  9. M. Moradi, A. Aminzadeh, and D. Rahmatabadi et al., Statistical and Experimental Analysis of Process Parameters of 3D Nylon Printed Parts by Fused Deposition Modeling: Response Surface Modeling and Optimization, J. Mater. Eng. Perform., 2021, 30, p 5441–5454. https://doi.org/10.1007/s11665-021-05848-4

    Article  CAS  Google Scholar 

  10. M. Moradi, R. Beygi, and N. Mohd. Yusof et al., 3D Printing of Acrylonitrile Butadiene Styrene by Fused Deposition Modeling: Artificial Neural Network and Response Surface Method Analyses, J. Mater. Eng. Perform., 2023, 32(4), p 2016–2028. https://doi.org/10.1007/s11665-022-07250-0

    Article  CAS  Google Scholar 

  11. H. Wang, M. Xu, and W. Zhang et al., Mechanical and Biological Characteristics of Diamond-like Carbon Coated Poly Aryl-Ether-Ether-Ketone, Biomaterials, 2010, 31, p 8181–8187.

    Article  CAS  Google Scholar 

  12. M. Rosentritt, V. Preis, M. Behr, N. Sereno, and C. Kolbeck, Shear Bond Strength Between Veneering Composite and PEEK After Different Surface Modifications, Clin. Oral Invest., 2015, 19, p 739–744.

    Article  Google Scholar 

  13. S. Najeeb, M.S. Zafar, Z. Khurshid, and F. Siddiqui, Applications of Polyether Ether Ketone (PEEK) in Oral Implantology and Prosthodontics, J. Prosthodont. Res., 2016, 60, p 12–19.

    Article  Google Scholar 

  14. B.I. Oladapo, S.A. Zahedi, S.O. Ismail, and F.T. Omigbodun, 3D Printing of PEEK and its Composite to Increase Biointerfaces as a Biomedical Material—A Review, Colloids Surfaces B: Biointerfaces, 2021, 203, p 111726.

    Article  CAS  Google Scholar 

  15. Q. Miao, Z. Dai, G. Ma, F. Niu and D. Wu, CF/PEEK Interleaved Laminates with PEEK Film Interleaving Manufactured by Laser-Assisted Forming: Microstructure and Interlaminar Shear Strength, Compos. Part A: Appl. Sci. Manuf., 2023, 172, p 107592.

    Article  CAS  Google Scholar 

  16. S. Xiaoyong, C. Liangcheng, M. Honglin, G. Peng, B. Zhanwei, and L. Cheng, Experimental analysis of high temperature PEEK materials on 3D printing test. Proceedings: 9th International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2017,13-16.

  17. J.K. Abifarin, C. Prakash, and S. Singh, Optimization and Significance of Fabrication Parameters on the Mechanical Properties of 3D Printed Chitosan/PLA Scaffold, Mater. Today: Proc., 2021, 50(5), p 2018–2025.

    Google Scholar 

  18. K. Yang, F. Zhang, Y. Chen, H. Zhang, B. Xiong, and H. Chen, Recent Progress on Carbon-Based Composites in Multidimensional Applications, Compos. Part A: Appl. Sci. Manuf., 2022, 157, p 106906.

    Article  CAS  Google Scholar 

  19. Y. Li and Y. Lou, Tensile and Bending Strength Improvements in PEEK Parts Using Fused Deposition Modelling 3D Printing Considering Multi-Factor Coupling, Polymers, 2020, 12(11), p 2497.

    Article  CAS  Google Scholar 

  20. P. Wang, B. Zou, H. Xiao, S. Ding, and C. Huang, Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality and microstructure of PEEK, J. Mater. Process. Tech., 2019, 271, p 62–74.

    Article  CAS  Google Scholar 

  21. W. Wenzheng, P. Geng, G. Li, D. Zhao, H. Zhangand, and J. Zhao, Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS, Materials, 2015, 8, p 5834–5846.

    Article  Google Scholar 

  22. M. Mokhtari, E. Archer, N. Bloomfield, E.H. Jonesa, and A. McIlhagger, High-Performance and Cost-Effective Melt Blended Polyether Ether Ketone/Expanded Graphite Composites for Mass Production of Antistatic Materials, Polym. Int., 2021, 70(8), p 1137–1145.

    Article  CAS  Google Scholar 

  23. Y. Wang, W.D. Müller, A. Rumjahn, F. Schmidt, and A.D. Schwitalla, Mechanical Properties of Fused Filament Fabricated PEEK for Biomedical Applications Depending on Additive Manufacturing Parameters, J. Mech. Behav. Biomed. Mater., 2021, 115, p 104250.

    Article  CAS  Google Scholar 

  24. R. Kumar, G. Singh, and A. Chinappan et al., On Mechanical, Physical, and Bioactivity Characteristics of Material Extrusion Printed Polyether Ether Ketone, J. Mater. Eng. Perform., 2023, 32, p 5885–5894. https://doi.org/10.1007/s11665-022-07519-4

    Article  CAS  Google Scholar 

  25. H. Spece, T. Yu, A.W. Law, M. Marcolongo, and S.M. Kurtz, 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces, J. Mech. Behav. Biomed. Mate., 2020, 109, p 103850.

    Article  CAS  Google Scholar 

  26. D. Le, C.H. Nguyen, and T.H.N. Pham et al., Optimizing 3D Printing Process Parameters for the Tensile Strength of Thermoplastic Polyurethane Plastic, J. Mater. Eng. Perform., 2023, 32, p 10805–10816.

    Article  CAS  Google Scholar 

  27. F. Wang, Y. Ji, and C. Chen et al., Tensile Properties of 3D Printed Structures of Polylactide with Thermoplastic Polyurethane, J. Polym. Res., 2022, 29, p 320. https://doi.org/10.1007/s10965-022-03172-6

    Article  CAS  Google Scholar 

  28. G. Derringer and R. Suich, Simultaneous Optimization of Several Response Variables, J. Qual. Technol., 1980, 12, p 214–219.

    Article  Google Scholar 

  29. R. Ramanujam, R. Raju, and N. Muthukrishnan, Taguchi Multi-Machining Characteristics Optimization in Turning of Al-15% SiCp Composites Using desirability Function Analysis, J. Stud. Manuf., 2010, 1(2–3), p 120–125.

    Google Scholar 

  30. S.O. Akande, Dimensional Accuracy and Surface Finish Optimization of Fused Deposition Modelling Parts using Desirability Function Analysis, Int. J. Eng. Res. Technol, 2015, 4(4), p 196–202.

    Google Scholar 

  31. C.N. Carmita, Optimization of Printing Parameters in Fused Deposition Modeling for Improving Part Quality and Process Sustainability, Int. J. Adv. Manuf. Technol., 2020, 108, p 2131–2147.

    Article  Google Scholar 

  32. A. Equbal, A.K. Sood, A.R. Ansari, and Md.A. Equbal, Optimization of Process Parameters of FDM Part for Minimizing its Dimensional Inaccuracy, Int. J. Mech. Prod. Eng. Res. Dev., 2017, 7(2), p 57–66.

    Google Scholar 

  33. N. Ranjan, R. Tyagi, R. Kumar, and V. Kumar, On Fabrication of Acrylonitrile Butadiene Styrene-Zirconium Oxide Composite Feedstock for 3D Printing-Based Rapid Tooling Applications, J. Thermoplast. Compos. Mater., 2023 https://doi.org/10.1177/08927057231186310

    Article  Google Scholar 

  34. R. Sharma, R. Singh, and A. Batish et al., On Mechanical, Thermal, Morphological, and 4D Capabilities of Polyvinylidene Fluoride Nanocomposites: Effect of Mechanical and Chemical-Assisted Mechanical Blending, J. Mater. Eng. Perform., 2023, 32, p 1938–1953. https://doi.org/10.1007/s11665-022-07199-0

    Article  CAS  Google Scholar 

  35. N. Ranjan, R. Kumar, R. Singh, and V. Kumar, On Polyvinyl Chloride-Polypropylene Composite Matrix for 4D Applications: Flowability, Mechanical, Thermal and Morphological Characterizations, J. Thermoplast. Compos. Mater., 2023, 36(4), p 1401–1421. https://doi.org/10.1177/08927057211059754

    Article  CAS  Google Scholar 

  36. N. Ranjan, R. Kumar, and R. Kumar et al., Investigation of Fused Filament Fabrication-Based Manufacturing of ABS-Al Composite Structures: Prediction by Machine Learning and Optimization, J. Mater. Eng. Perform., 2023, 32, p 4555–4574. https://doi.org/10.1007/s11665-022-07431-x

    Article  CAS  Google Scholar 

  37. S.K. Tamang, N. Natrajan, and M. Chandrasekaran, Optimization of EDM Process in Machining Micro Holes for Improvement of Hole Quality, J. Braz. Soc. Mech. Sci. Eng., 2017, 39, p 1277–1287.

    Article  CAS  Google Scholar 

  38. J.D. Kechagias, N. Vidakis, M. Petousis, and N. Mountakis, A Multi-Parametric Process Evaluation of the Mechanical Response of PLA in FFF 3D Printing, Mater. Manuf. Processes, 2022, 38(8), p 941–953.

    Article  Google Scholar 

  39. H. Yang, F. Ji, Z. Li, and S. Tao, Preparation of Hydrophobic Surface on PLA and ABS by Fused Deposition Modeling, Polymers, 2020, 12, p 1539. https://doi.org/10.3390/polym12071539

    Article  CAS  Google Scholar 

  40. U.M. Mahesh, V.Y. Narayana, and B. Sridhar, Investigations of influence of infill pattern on tensile strength of 3D-printed poly lactic acid and Polyethylene Terephthalate Glycol material using Design of Experiments, Mater. Today Proc., 2023 https://doi.org/10.1016/j.matpr.2023.03.406

    Article  Google Scholar 

  41. C.A. Ghiorghe, G. Iovan, V. Carlescu, B. Istrate, G. Panchu, and S. Andrian, Comparative Evaluation of Hardness and Elasticity Modulus of tooth-colored materials for dental restoration, Rev. Chim., 2017, 68(11), p 2623–2627. https://doi.org/10.37358/RC.17.11.5942

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotisman Borah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, J., Chandrasekaran, M. & Selvarajan, L. Taguchi-Based Experimental Investigation and Modeling of 3D-Printed PEEK Parts as Biomedical Implants using Fused Deposition Modeling for Improving Mechanical Strength and Surface Quality. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09036-4

Keywords

Navigation