Skip to main content
Log in

Effect of Laser Shock Peening on AA2219 Friction Stir Weld Joint: Temperature Dependent Tensile Properties

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AA2219 is an age hardenable, high-strength aluminium alloy used for manufacturing propellant tanks in launch vehicles with Friction Stir Welding (FSW). Surface treatment methods such as shot peening, laser shock peening etc., are widely used to improve the fatigue performance of metallic materials and weld joints. This study focuses on the effect of laser shock peening on the tensile properties of AA2219 T87 FSW joint at various temperatures. Specimens were laser shock peened on the crown (top) and root (bottom) sides of the weld joint, and tensile behaviour was studied at room temperature, cryogenic temperature (77 K), and high temperature (423 K). At room temperature, laser shock peening increased yield strength by 7, 10 and 14% with single, three and six layers of peening, respectively. A similar increase (5%—single layer, 7%—three layers, 12%—six layers peening) is observed in cryo temperature also. At 423 K, an increase of 1-7% in yield strength is noticed. However, LSP does not influence ultimate tensile strength and elongation properties significantly. Due to LSP, a high-energy laser pulse impacts the specimen and induces compressive stress on the surface, increasing dislocation density and improving yield strength. Laser shock peening also increased the hardness in all the weld zones. In the Weld nugget region, an increase of 7%, 17% and 20% is observed with single, three and six-layers of peening, respectively, in average microhardness on the crown side of the weld. Irrespective of the number of layers of peening and test temperatures, the failure was found in the thermo-mechanically affected zone due to the dissolution and coarsening of Al2Cu strengthening precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. W.J. Muraca, Aluminum Alloy 2219, in Materials Data Handbook (Marshall Space Flight Centre, NASA, 1972).

  2. S.V.S.N. Murty, S.K. Manwatkar, and P.R. Narayanan, Role of Metallographic Analysis in the Identification of Location of Crack Initiation in a Burst Tested AA 2219 Propellant Tank, Metallogr. Microstruct. Anal., 2015, 4(5), p 392-402.

    Article  CAS  Google Scholar 

  3. S.V.S. Narayana Murty and S.C. Sharma, Materials for Indian Space Program: An Overview, J. Indian Inst. Sci., 2022, 102(1), p 513-559. https://doi.org/10.1007/s41745-021-00284-8

    Article  Google Scholar 

  4. G.V. Narayana, V.M.J. Sharma, V. Diwakar, K. Sree Kumar, and R.C. Prasad, Fracture Behaviour of Aluminium Alloy 2219–T87 Welded Plates, Sci. Technol. Weld. Join., 2004, 9(2), p 121-130.

    Article  CAS  Google Scholar 

  5. B.S. Nair, G. Phanikumar, K. Prasad Rao, and P.P. Sinha, Improvement of Mechanical Properties of Gas Tungsten Arc and Electron Beam Welded AA2219 (Al-6 Wt-%Cu) Alloy, Sci. Technol. Weld. Join., 2007, 12(7), p 579-585.

    Article  CAS  Google Scholar 

  6. S. Kou, Welding Metallurgy, 2nd Ed. John Wiley & Sons, Inc., Publication (2003).

  7. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50(1-2), p 1-78.

    Article  Google Scholar 

  8. G. Wang, Y. Zhao and, Y. Hao, Friction Stir Welding of High-Strength Aerospace Aluminum Alloy and Application in Rocket Tank Manufacturing, J. Mater. Sci. Technol., 2018, 34(1), p 73-91.

    Article  CAS  Google Scholar 

  9. K.S. Arora, S. Pandey, M. Schaper, and R. Kumar, Microstructure Evolution during Friction Stir Welding of Aluminum Alloy AA2219, J. Mater. Sci. Technol., 2010, 26(8), p 747-753. https://doi.org/10.1016/S1005-0302(10)60118-1

    Article  CAS  Google Scholar 

  10. D. Venkateswarlu, M. Cheepu, P.N. Rao, S.S. Kumaran, and N. Srinivasan, Characterization of Microstructure and Mechanical Properties of AA2219-O and T6 Friction Stir Welds, Mater. Sci. Forum, 2019, 969, p 205-210.

    Article  Google Scholar 

  11. J. Kang, Z.-C. Feng, J.-C. Li, G.S. Frankel, G.Q. Wang, and A.P. Wu, Friction Stir Welding of Al Alloy 2219–T8: Part II-Mechanical and Corrosion, Metall. Mater. Trans. A, 2016, 47(9), p 4566-4577.

    Article  CAS  Google Scholar 

  12. X. Lei, Y. Deng, Z. Yin, and G. Xu, Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-Mm-Thick 2219–T87 Plates at Room Temperature and -196 °C, J. Mater. Eng. Perform., 2014, 23(6), p 2149-2158.

    Article  CAS  Google Scholar 

  13. P.B. Srinivasan, K.S. Arora, W. Dietzel, S. Pandey, and M.K. Schaper, Characterisation of Microstructure, Mechanical Properties and Corrosion Behaviour of an AA2219 Friction Stir Weldment, J. Alloys Compd., 2010, 492(1), p 631-637. https://doi.org/10.1016/j.jallcom.2009.11.198

    Article  CAS  Google Scholar 

  14. A.K. Lakshminarayanan, S. Malarvizhi, and V. Balasubramanian, Developing Friction Stir Welding Window for AA2219 Aluminium Alloy, Trans. Nonferrous Met. Soc. China (English Ed.), 2011, 21(11), p 2339-2347.

    Article  CAS  Google Scholar 

  15. S. Malarvizhi and V. Balasubramanian, Effect of Welding Processes on AA2219 Aluminium Alloy Joint Properties, Trans. Nonferrous Met. Soc. China, 2011, 21(5), p 962-973. https://doi.org/10.1016/S1003-6326(11)60808-X

    Article  CAS  Google Scholar 

  16. S. Malarvizhi and V. Balasubramanian, Influences of Welding Processes and Post-Weld Ageing Treatment on Mechanical and Metallurgical Properties of AA2219 Aluminium Alloy Joints, Weld. World, 2012, 56(9-10), p 105-119.

    Article  CAS  Google Scholar 

  17. A.H. Baghdadi, Z. Sajuri, A. Keshtgar, N.M. Sharif, and A. Rajabi, Mechanical Property Improvement in Dissimilar Friction Stir Welded Al5083/Al6061 Joints: Effects of Post-Weld Heat Treatment and Abnormal Grain Growth, Materials (Basel), 2022, 15(1), p 288.

    Article  CAS  Google Scholar 

  18. H.-S. Lee, J.-H. Yoon, J.-T. Yoo, and K.-J. Min, A Study on Microstructure of AA2219 Friction Stir Welded Joint in International Symposium on Mechanical Engineering and Material Science (ISMEMS 2016), 2016, p. 6-10.

  19. K.S. Arora, S. Pandey, M. Schaper, and R. Kumar, Effect of Process Parameters on Friction Stir Welding of Aluminum Alloy 2219–T87, Int. J. Adv. Manuf. Technol., 2010, 50(9-12), p 941-952.

    Article  Google Scholar 

  20. S. Rajakumar and V. Balasubramanian, Establishing Relationships between Mechanical Properties of Aluminium Alloys and Optimised Friction Stir Welding Process Parameters, Mater. Des., 2012, 40, p 17-35. https://doi.org/10.1016/j.matdes.2012.02.054

    Article  CAS  Google Scholar 

  21. S. Balaji and M.M. Mahapatra, Experimental Study and Modeling of Friction Stir Welding Process to Produce Optimized AA2219 Butt Welds for Aerospace Application, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2013, 227(1), p 132-143.

    Article  CAS  Google Scholar 

  22. D. Balaji Naik, C.H. Venkata Rao, K. Srinivasa Rao, G. Madhusudan Reddy, and G. Rambabu, Optimization of Friction Stir Welding Parameters to Improve Corrosion Resistance and Hardness of AA2219 Aluminum Alloy Welds, Mater. Today Proc., 2019, 15, p 76-83. https://doi.org/10.1016/j.matpr.2019.05.027

    Article  CAS  Google Scholar 

  23. S. Babu, K. Elangovan, V. Balasubramanian, and M. Balasubramanian, Optimizing Friction Stir Welding Parameters to Maximize Tensile Strength of AA2219 Aluminum Alloy Joints, Met. Mater. Int., 2009, 15(2), p 321-330.

    Article  CAS  Google Scholar 

  24. K.K. No, J.T. Yoo, J.H. Yoon, and H.S. Lee, An Experimental Study of Process Parameters on Friction Stir Welded Aluminum Alloy 2219 Joint Properties, Appl. Mech. Mater., 2017, 863, p 3-7.

    Article  Google Scholar 

  25. American Welding Soceity, Specification for Friction Stir Welding of Aluminium Alloys for Aerospace Applications (2009).

  26. MSFC Technical Standard, Process Specification -Welding Aerospace Hardware (2018).

  27. S.W. Williams and A. Steuwer, Residual Stresses in Friction Stir Welding. in Friction Stir Welding: From Basics to Applications (2009).

  28. B. Dhakal and S. Swaroop, Review: Laser Shock Peening as Post Welding Treatment Technique, J. Manuf. Process., 2018, 32, p 721-733. https://doi.org/10.1016/j.jmapro.2018.04.006

    Article  Google Scholar 

  29. L.Y.K. Ding, Laser Shock Peening- Performance and Process Simulation, CRC Press, Woodhead Publishing Limited, England, 2006.

    Book  Google Scholar 

  30. O. Hatamleh, The Effects of Laser Peening and Shot Peening on Mechanical Properties in Friction Stir Welded 7075–T7351 Aluminum, J. Mater. Eng. Perform., 2008, 17(5), p 688-694.

    Article  CAS  Google Scholar 

  31. O. Hatamleh, Effects of Peening on Mechanical Properties in Friction Stir Welded 2195 Aluminum Alloy Joints, Mater. Sci. Eng. A, 2008, 492(1-2), p 168-176.

    Article  Google Scholar 

  32. O. Hatamleh, I.V. Rivero, and J. Lyons, Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening, J. Mater. Eng. Perform., 2007, 16(5), p 549-553.

    Article  CAS  Google Scholar 

  33. O. Hatamleh, I.V. Rivero, and S.E. Swain, An Investigation of the Residual Stress Characterization and Relaxation in Peened Friction Stir Welded Aluminum-Lithium Alloy Joints, Mater. Des., 2009, 30(9), p 3367-3373. https://doi.org/10.1016/j.matdes.2009.03.038

    Article  CAS  Google Scholar 

  34. A. Ali, X. An, C.A. Rodopoulos, M.W. Brown, P. O’Hara, A. Levers, and S. Gardiner, The Effect of Controlled Shot Peening on the Fatigue Behaviour of 2024–T3 Aluminium Friction Stir Welds, Int. J. Fatigue, 2007, 29(8), p 1531-1545.

    Article  CAS  Google Scholar 

  35. P. Liu, S. Sun, and J. Hu, Effect of Laser Shock Peening on the Microstructure and Corrosion Resistance in the Surface of Weld Nugget Zone and Heat-Affected Zone of FSW Joints of 7050 Al Alloy, Opt. Laser Technol., 2018, 2019, p 1-7.

    Google Scholar 

  36. P. Liu, S. Sun, S. Xu, Y. Li, and G. Ren, Microstructure and Properties in the Weld Surface of Friction Stir Welded 7050–T7451 Aluminium Alloys by Laser Shock Peening, Vacuum, 2018, 152, p 25-29.

    Article  CAS  Google Scholar 

  37. L. Nie, Y. Wu, H. Gong, D. Chen, and X. Guo, Effect of Shot Peening on Redistribution of Residual Stress Field in Friction Stir Welding of 2219 Aluminum Alloy, Materials (Basel), 2020, 13(14), p 1-13.

    Article  Google Scholar 

  38. S. Dixit, A. Mahata, D.R. Mahapatra, S.V. Kailas, and K. Chattopadhyay, Multi-Layer Graphene Reinforced Aluminum – Manufacturing of High Strength Composite by Friction Stir Alloying, Compos. Part B Eng., 2018, 136, p 63-71. https://doi.org/10.1016/j.compositesb.2017.10.028

    Article  CAS  Google Scholar 

  39. C.S. Tiwary, J. Prakash, S. Chakraborty, D.R. Mahapatra, and K. Chattopadhyay, Subsurface Deformation Studies of Aluminium during Wear and Its Theoretical Understanding Using Molecular Dynamics, Philos. Mag., 2018, 98(29), p 2680-2700. https://doi.org/10.1080/14786435.2018.1502481

    Article  CAS  Google Scholar 

  40. ASTM E8, ASTM E8/E8M Standard Test Methods for Tension Testing of Metallic Materials 1, Annu. B. ASTM Stand. 4, (2010) pp. 1-27.

  41. T. Antony Prabhu, N. Murugesan, S. Ingersol, D.P. Sudhakar, and P.V. Venkitakrishnan, Studies on Notch Tensile Properties of Ti-5Al-2.5Sn ELI at Cryogenic Temperature for Hydrogen Embrittlement Effect, Appl. Mech. Mater., 2018, 877, p 39-43.

    Article  Google Scholar 

  42. G.V. Narayana, Fracture Behaviour of Aluminium Alloy AA 2219-T87 Welded Plates at Room And Cryo Temperatures Supervisors (2006).

  43. P.R. Venkata Narayana, V.M.J. Sharma, V. Diwakar, K. Sreekumar, and M.C. Mittal, Fracture and Damage Mechanisms of Aluminium Alloy 2219-T87 Welded Plates at Room and Cryo Temperatures, in Proceedings of the fourth international conference on fracture and damage mechanics, (Mallorca, Spain, 2005), p. 605-612.

  44. M. Agilan, G. Phanikumar, and D. Sivakumar, Tensile Behaviour and Microstructure Evolution in Friction Stir Welded 2195–2219 Dissimilar Aluminium Alloy Joints, Weld. World, 2022, 66(2), p 227-237. https://doi.org/10.1007/s40194-021-01217-w

    Article  CAS  Google Scholar 

  45. M.Q. Ian Polmear, D. StJohn, and J.-F. Nie, Light Alloys-Metallurgy of the Light Metals, 5th Ed. Butterworth-Heinemann (2017).

  46. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54(2), p 49-93.

    Article  CAS  Google Scholar 

  47. Y.C. Chen and K. Nakata, Evaluation of Microstructure and Mechanical Properties in Friction Stir Processed SKD61 Tool Steel, Mater. Charact., 2009, 60(12), p 1471-1475. https://doi.org/10.1016/j.matchar.2009.07.004

    Article  CAS  Google Scholar 

  48. P. Manikandan, T.A. Prabhu, S.K. Manwatkar, G.S. Rao, S.V.S.N. Murty, D. Sivakumar, B. Pant, and M. Mohan, Tensile and Fracture Properties of Aluminium Alloy AA2219-T87 Friction Stir Weld Joints for Aerospace Applications, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2021, 52(9), p 3759-3776. https://doi.org/10.1007/s11661-021-06337-y

    Article  CAS  Google Scholar 

  49. O. Hatamleh, R.S. Mishra, and O. Oliveras, Peening Effects on Mechanical Properties in Friction Stir Welded AA 2195 at Elevated and Cryogenic Temperatures, Mater. Des., 2009, 30(8), p 3165-3173.

    Article  CAS  Google Scholar 

  50. S. Mondol, S. Kashyap, S. Kumar, and K. Chattopadhyay, Improvement of High Temperature Strength of 2219 Alloy by Sc and Zr Addition through a Novel Three-Stage Heat Treatment Route, Mater. Sci. Eng. A, 2018, 732, p 157-166. https://doi.org/10.1016/j.msea.2018.07.003

    Article  CAS  Google Scholar 

  51. R. Bobbili, V. Madhu, and A.K. Gogia, Tensile Behaviour of Aluminium 7017 Alloy at Various Temperatures and Strain Rates, J. Mater. Res. Technol., 2016, 5(2), p 190-197. https://doi.org/10.1016/j.jmrt.2015.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the valuable contribution of Dr Duraiselvam, NIT, Trichy, and his team for supporting in carrying out Laser Shock Peening. The invaluable contributions of ISRO colleagues from VSSC (HWMD & MTD), IPRC, and LPSC (MME & LHWC) are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Roy Mahapatra.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest on behalf of all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanasekaran, M.P., Agilan, M., Avinash, S. et al. Effect of Laser Shock Peening on AA2219 Friction Stir Weld Joint: Temperature Dependent Tensile Properties. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09034-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09034-6

Keywords

Navigation