Skip to main content
Log in

Effects of Welding Speed and Welding Current on the Residual Stress and Deformation of SAF 2507/316L Dissimilar Plasma Arc Welding

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

As a tubing adapter for submarine oil and gas exploitation, super duplex stainless steel usually needs to be connected with other different metals. The effects of welding speed and welding current on the residual stress and deformation of SAF 2507/316L dissimilar plasma arc welding were investigated by numerical simulation and experimental verification. Results show that under four welding speeds and welding currents, with the increase in heat input, the equivalent stress of SAF 2507/316L welded joints decreases first and then increases, the deformation in Z-direction increases first and then decreases, and the maximum deformation increases slightly. The welding speed has a great influence on the residual stress. The overall deformation of SAF 2507/316L welded joints under four welding speeds and welding currents is low, and the maximum deformation is only 0.66 mm. On the whole, the equivalent stress of SAF 2507/316L welded joint with welding parameters of 200 A, 23 V and 3 mm/s is the smallest, but the deformation in Z-direction is the largest. Therefore, it is necessary to consider the actual situation comprehensively in order to take into account the stress and deformation. The correctness of the simulation results is proved by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. R. Chaudhari, P.K. Loharkar, and A. Ingle, Applications and Challenges of Arc Welding Methods in Dissimilar Metal Joining, IOP Conf. Ser.: Mater. Sci. Eng., 2020, 810, p 12006.

    Article  Google Scholar 

  2. C. Khalil and S. Racineux, Magnetic Pulse Welding and Spot Welding with Improved Coil Efficiency—Application for Dissimilar Welding of Automotive Metal Alloys, J. Manuf. Mater. Process., 2020, 4(3), p 69.

    CAS  Google Scholar 

  3. P. Corigliano, V. Crupi, and E. Guglielmino, Non linear Finite Element Simulation of Explosive Welded Joints of Dissimilar Metals for Shipbuilding Applications, Ocean Eng., 2018, 160, p 346–353.

    Article  Google Scholar 

  4. D.W. Rathod, P.K. Singh, S. Pandey, and S.J. Aravindan, Effect of Buffer-Layered Buttering on Microstructure and Mechanical Properties of Dissimilar Metal Weld Joints for Nuclear Plant Application, Mater. Sci. Eng. A, 2016, 666, p 100–113.

    Article  CAS  Google Scholar 

  5. S. Naik, S. Panda, S. Padhye, G. Lobo, G. Joshi, S. Deshmukh, and A. Ingle, Parametric Review on Friction Stir Welding for under Water and Dissimilar Metal Joining Applications, Mater. Today: Proc., 2021, 47(11), p 3117–3122.

    CAS  Google Scholar 

  6. N. Nissley, T.D., Anderson, F. Fredrick, I.I. Noecker, F.F., Roepke, C. Gallagher, M. Hukle, Dissimilar metal welding of nitronic 50 HS® and 25% Cr super duplex stainless steel: in ASME 2014 33rd international conference on ocean, offshore and arctic engineering, San Francisco, California, USA, 2014

  7. R. Gunn, Duplex Stainless Steels, Microstructure, Properties and Applications, Woodhead Publishing, Cambridge, 2015.

    Google Scholar 

  8. A.V. Jebaraj, L. Ajaykumar, C.R. Deepak, and K.V. Aditya, Weldability, Machinability and Surfacing of Commercial Duplex Stainless Steel AISI2205 for Marine Applications—A Recent Review, J. Adv. Res., 2017, 8(3), p 183–199.

    Article  Google Scholar 

  9. Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, and C.O. Pettersson, Microstructure and Mechanical Properties of Friction Stir Welded SAF 2507 Super Duplex Stainless Steel, Mater. Sci. Eng. A, 2005, 397(1–2), p 376–384.

    Article  Google Scholar 

  10. S.H. Byun, N. Kang, T.H. Lee, S.K. Ahn, H.W. Lee, W.S. Chang, and K.M. Cho, Kinetics of Cr/Mo-Rich Precipitates Formation for 25Cr-6.9 Ni-3.8 Mo-0.3 N Super Duplex Stainless Steel, Met. Mater. Int., 2012, 18(2), p 201–207.

    Article  CAS  Google Scholar 

  11. B. Deng, Y.M. Jiang, J. Gao, and J. Li, Effect of Annealing Treatment on Microstructure Evolution and the Associated Corrosion Behavior of a Super-Duplex Stainless Steel, J. Alloys Compd., 2010, 493(1–2), p 461–464.

    Article  CAS  Google Scholar 

  12. J. Nowacki, Ferritic-Austenitic Steel and its Weldability in Large Size Constructions, J. Achiev. Mater. Manuf. Eng., 2009, 32(2), p 115–141.

    Google Scholar 

  13. T. Kannan and N. Murugan, Effect of Flux Cored Arc Welding Process Parameters on Duplex Stainless Steel Clad Quality, J. Mater. Process. Technol., 2007, 176(1–3), p 230–239.

    Google Scholar 

  14. C. Lee and K. Chang, Comparative Study on Girth Weld-Induced Residual Stresses Between Austenitic and Duplex Stainless Steel Pipe Welds, Appl. Therm. Eng., 2014, 63(1), p 140–150.

    Article  CAS  Google Scholar 

  15. S. Cui, S. Pang, D. Pang, Q. Zhang, and Z. Zhang, Numerical Simulation and Experimental Investigation on 2205 Duplex Stainless Steel k-tig Welded Joint, Metals, 2021, 11(8), p 1323.

    Article  CAS  Google Scholar 

  16. K. Yurtisik, S. Tirkes, I. Dykhno, C.H. Gur, and R. Gurbuz, Characterization of Duplex Stainless Steel Weld Metals Obtained by Hybrid Plasma-Gas Metal Arc Welding, Soldag. Insp., 2013, 18(3), p 207–216.

    Article  CAS  Google Scholar 

  17. A. Ghosh, D. Misra, and S.K. Acharyya, Numerical Simulation of the Laser Welding of 2205 Duplex Stainless Steel, Int. J. Laser Sci.: Fundam. Theory Anal. Methods, 2018, 1(3–4), p 293–313.

    Google Scholar 

  18. E. Taban, Toughness and Microstructural Analysis of Super Duplex Stainless Steel Joined by Plasma Arc Welding, J. Mater. Sci., 2008, 43(12), p 4309–4315.

    Article  CAS  Google Scholar 

  19. Q. Wang, G. Gu, C. Jia, K. Li, and C. Wu, Investigation of Microstructure Evolution, Mechanical and Corrosion Properties of SAF 2507 Super Duplex Stainless Steel Joints by Keyhole Plasma Arc Welding, J. Mater. Res. Technol., 2022, 22, p 355–374.

    Article  Google Scholar 

  20. K. Trydell, K.A. Persson, N. Fuertes, E. Siewert, N. Hussary, M. Pfreuntner, P. Bengtsson, P. Janiak, R. Vishnu, and M. Frodigh, Ferrite Fraction in Duplex Stainless Steel Welded with a Novel Plasma Arc Torch, Weld. World, 2023, 67(3), p 805–817.

    Article  CAS  Google Scholar 

  21. R. Pramod, S. Mohan Kumar, N.S. Shanmugam, and S.A. Vendan, Formability Studies on Plasma Arc Welded Duplex Stainless Steel 2205 Sheet(Article)[Formbarkeitsstudien an Blechen aus plasma-lichtbogengeschweißtem rostfreiem Duplexstahl X2CrNiMo N22-5-3], Mater. Werkst., 2020, 51(2), p 163–173.

    Article  Google Scholar 

  22. J. Pu, P. Xie, W. Long, M. Wu, Y. Sheng, and J. Sheng, Effect of Current on Corrosion Resistance of Duplex Stainless Steel Layer Obtained by Plasma Arc Cladding, Crystals, 2022, 12(341), p 341.

    Article  CAS  Google Scholar 

  23. P.K. Taraphdar, R. Kumar, C. Pandey, and M.M. Mahapatra, Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses, Met. Mater. Int., 2021, 27(9), p 3478–3492.

    Article  CAS  Google Scholar 

  24. C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini, Effect of Weld Consumable Conditioning on the Diffusible Hydrogen and Subsequent Residual Stress and Flexural Strength of Multipass Welded P91 Steels, Metall. Mater. Trans. Part B, 2018, 49(5), p 2881–2895.

    Article  CAS  Google Scholar 

  25. C. Pandey, M.M. Mahapatra, P. Kumar, and A. Giri, Microstructure Characterization and Charpy Toughness of P91 Weldment For As-Welded, Post-Weld Heat Treatment and Normalizing & Tempering Heat Treatment (Article), Met. Mater. Int., 2017, 23(5), p 900–914.

    Article  CAS  Google Scholar 

  26. S. Kumar, C. Pandey, and A. Goyal, Microstructure and Mechanical Behavior of P91 Steel Dissimilar Welded Joints Made with IN718 Filler, Int. J. Press. Vessels Pip., 2021, 190, p 104290.

    Article  CAS  Google Scholar 

  27. A. Giri, C. Pandey, M.M. Mahapatra, K. Sharma, and P.K. Singh, On the Estimation of Error in Measuring the Residual Stress by Strain Gauge Rosette, Measurement, 2015, 65, p 41–49.

    Article  Google Scholar 

  28. A. Giri, M.M. Mahapatra, K. Sharma, and P.K. Singh, A Study on the Effect of Weld Groove Designs on Residual Stresses in SS 304LN Thick Multipass Pipe Welds, Int. J. Steel Struct., 2017, 17(1), p 65–75.

    Article  Google Scholar 

  29. A. Giri and M.M. Mahapatra, On the Measurement of Sub-Surface Residual Stresses in SS 304L Welds by Dry Ring Core Technique(Article), Meas.: J. Int. Meas. Confed., 2017, 106, p 152–160.

    Article  Google Scholar 

  30. G. Dak and C. Pandey, A Critical Review on Dissimilar Welds Joint Between Martensitic and Austenitic Steel for Power Plant Application, J. Manuf. Process., 2020, 58, p 377–406.

    Article  Google Scholar 

  31. B. Qin, R. Qu, Y. Xie, and S. Liu, Numerical Simulation and experimental Study on the TIG (A-TIG) Welding of Dissimilar Magnesium Alloys, Materials, 2022, 15, p 4922.

    Article  CAS  Google Scholar 

  32. R.M. Farias, P.R.F. Teixeira, and L.O. Vilarinho, Variable Profile Heat Source Models for Numerical Simulations of Arc Welding Processes, Int. J. Therm. Sci., 2022, 179, p 107593.

    Article  Google Scholar 

  33. D.M. Evans, D. Huang, J.C. McClure, and A.C. Nunes, Arc Efficiency of Plasma Arc Welding, Weld. J., 1998, 77(2), p 53–58.

    Google Scholar 

  34. Q.X. Hu, Finite Element Analysis of Temperature Fields in Keyhole Plasma Arc Welding [Doctoral dissertation]. Shandong University. 2007

  35. C. Mai, X. Hu, L. Zhang, B. Song, and X. Zheng, Numerical Simulation and Experimental Verification of Residual Stress in the Welded Joints of Weldolet–Branch Pipe Dissimilar Steels, Materials, 2022, 15(3), p 1044.

    Article  CAS  Google Scholar 

  36. M. Wang, K. Guo, Y. Wei, C. Cao, and Z. Tong, Welding Process Optimization for the Inner Tank of the Electric Water Heater by Numerical Simulation and Experimental Study, J. Manuf. Process., 2023, 85, p 52–68.

    Article  Google Scholar 

  37. M.C. Smith and A.C. Smith, NeT Bead-on-Plate Round Robin: Comparison of Transient Thermal Predictions and Measurements, Int. J. Press. Vessels Pip., 2009, 86(1), p 96–109.

    Article  CAS  Google Scholar 

  38. J. Goldak, A. Chakravarti, and M. Bibby, A New Finite Element Model for Welding Heat Sources, Metall. Mater. Trans. B, 1984, 15(2), p 299–305.

    Article  Google Scholar 

  39. E.D. Derakhshan, N. Yazdian, B. Craft, S. Smith, and R. Kovacevic, Numerical Simulation and Experimental Validation of Residual Stress and Welding Distortion Induced by Laser-Based Welding Processes of Thin Structural Steel Plates in Butt Joint Configuration, Opt. Laser Technol., 2018, 104, p 170–182.

    Article  CAS  Google Scholar 

  40. R.H. Leggatt, Residual Stresses in Welded Structures, Int. J. Press. Vessels Pip., 2008, 85(3), p 144–151.

    Article  CAS  Google Scholar 

  41. Y. Ye, J. Cai, X. Jiang, D. Dai, and D. Deng, Influence of Groove Type on Welding-Induced Residual Stress, Deformation and Width of Sensitization Region in a Sus304 Steel Butt Welded Joint, Adv. Eng. Softw., 2015, 86(C), p 39–48.

    Article  Google Scholar 

  42. B. Huang, Z. Fang, J. Yang, J. Zheng, and S. Wang, Numerical Simulation of S355JR-316L Dissimilar Metal Welding, Weld. World, 2022, 66(2), p 287–299.

    Article  CAS  Google Scholar 

  43. S.D. Banik, S. Kumar, P.K. Singh, S. Bhattacharya, and M.M. Mahapatra, Prediction of Distortions and Residual Stresses in Narrow Gap Weld Joints Prepared by Hot Wire GTAW and Its Validation with Experiments, Int. J. Press. Vessels Pip., 2021, 193, p 104477.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Sichuan Natural Science Foundation Project (2023NSFSC0405) and Sichuan Provincial Engineering Research Center of Advanced Materials Manufacturing Technology for Shale Gas High-efficient Exploitation (2022SCYYQKCCL005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bensheng Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Huang, B., Li, T. et al. Effects of Welding Speed and Welding Current on the Residual Stress and Deformation of SAF 2507/316L Dissimilar Plasma Arc Welding. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08969-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08969-0

Keywords

Navigation