Skip to main content
Log in

Thermoelectric Properties of Zr-Doped FeV0.64Hf0.16Ti0.2Sb Half-Heusler Alloys

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Alloys of FeVSb and FeV0.64−xZrxHf0.16Ti0.2Sb half-Heusler materials have been prepared by successive arc melting and mechanical alloying (MA). FeVSb alloy was doped with V, Hf and Ti besides Zr that was used as dopant, replacing the positions of V atoms. Crystal structure and thermoelectric properties have been investigated before and after Zr doping. The crystal structure and morphology investigations have been successfully performed for all samples in this study. Transport and thermoelectric properties were investigated against temperature over a temperature range from 300 to 700 K. Electrical conductivity of the doped samples showed metallic-like behavior, while the FeV0.64Hf0.16Ti0.2Sb alloy exhibited a semiconducting trend. The parent FeVSb alloy exhibited n-type conduction. However, the sign has changed to a positive one after doping in the FeVSb lattice. Mass fluctuations followed by a disorder scattering were present. The room temperature Seebeck coefficient of FeVSb was recorded at 110 µV/K. The highest recorded power factor was obtained at 420 K for FeVSb at 1.07 mWm−1 K−2. Thermal conductivity of the parent alloy was reduced to a large extent upon Hf and Ti co-doping due to enhanced point defect scattering. However, Zr-doping at the expense of V led to a small increase in the thermal conductivity and thus a reduction in the power factor and the figure of merit. The maximum thermoelectric performance (zT) was observed at 0.27 for FeV0.64Hf0.16Ti0.2Sb at 700 K. The materials under this study can be used for high-temperature power generation applications. Due to their high power factor at room temperature, the studied materials are suitable for micro-thermoelectric generator applications for energy harvesting near room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. El-Khouly, A. Novitskii, I. Serhiienko, A. Kalugina, A. Sedegov, D. Karpenkov, A. Voronin, V. Khovaylo, and A.M. Adam, Optimizing the Thermoelectric Performance of FeVSb Half-Heusler Compound via Hf–Ti Double Doping, J. Power. Sourc., 2020, 477, p 228768.

    Article  CAS  Google Scholar 

  2. A. El-Khouly, A.M. Adam, Y. Altowairqi, I. Serhiienko, E. Chernyshova, A. Ivanova, V.L. Kurichenko, A. Sedegov, D. Karpenkov, A. Novitskii, and A. Voronin, Transport and Thermoelectric Properties of Nb-doped FeV0.64Hf0.16Ti0.2Sb Half-Heusler Alloys Synthesized by Two Ball Milling Regimes, J. Alloys Compd., 2022, 890, p 161838.

    Article  CAS  Google Scholar 

  3. P. Qiu, J. Yang, X. Huang, X. Chen, and L. Chen, Effect of Antisite Defects on Band Structure and Thermoelectric Performance of ZrNiSn Half-Heusler Alloys, Appl. Phys. Lett., 2010, 96(15), p 152105.

    Article  Google Scholar 

  4. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers, Nano Lett., 2011, 11(2), p 556–560.

    Article  CAS  Google Scholar 

  5. A.M. Adam, E.M. Elsehly, M. Ataalla, A. El-Khouly, A. Nafady, and A.K. Diab, Preparation and Thermoelectric Power Properties of Highly Doped p-Type Sb2Te3 Thin Films, Physica E, 2021, 127, p 114505.

    Article  CAS  Google Scholar 

  6. C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, and J. He, High-Performance Half-Heusler Thermoelectric Materials Hf1−xZrxNiSn1−ySby Prepared by Levitation Melting and Spark Plasma Sintering, Acta Mater., 2009, 57(9), p 2757–2764.

    Article  CAS  Google Scholar 

  7. A. El-Khouly, A.M. Adam, E.M.M. Ibrahim, A. Nafady, D. Karpenkov, A. Novitskii, A. Voronin, V. Khovaylo, and E.M. Elsehly, Mechanical and Thermoelectric Properties of FeVSb-Based Half-Heusler Alloys, J. Alloys Compd., 2021, 886, p 161308.

    Article  CAS  Google Scholar 

  8. A. El-Khouly, A.M. Adam, A. Novitskii, E.M.M. Ibrahim, I. Serhiienko, A. Nafady, M.K. Kutzhanov, D. Karpenkov, A. Voronin, and V. Khovaylo, Effects of Spark Plasma Sintering on Enhancing the Thermoelectric Performance of Hf–Ti Doped VFeSb Half-Heusler Alloys, J. Phys. Chem. Solids, 2021, 150, p 109848.

    Article  CAS  Google Scholar 

  9. C. Fu, H. Xie, Y. Liu, T.J. Zhu, J. Xie, and X.B. Zhao, Thermoelectric Properties of FeVSb Half-Heusler Compounds by Levitation Melting and Spark Plasma Sintering, Intermetallics, 2013, 32, p 39–43.

    Article  CAS  Google Scholar 

  10. C. Fu, T. Zhu, Y. Pei, H. Xie, H. Wang, G.J. Snyder, Y. Liu, Y. Liu, and X. Zhao, High Band Degeneracy Contributes to High Thermoelectric Performance in p-Type Half-Heusler Compounds, Adv. Energy Mater., 2014, 4(18), p 1400600.

    Article  Google Scholar 

  11. C. Fu, H. Xie, T.J. Zhu, J. Xie, and X.B. Zhao, Enhanced Phonon Scattering by Mass and Strain Field Fluctuations in Nb Substituted FeVSb Half-Heusler Thermoelectric Materials, J. Appl. Phys., 2012, 112(12), p 124915.

    Article  Google Scholar 

  12. M. Zou, J.F. Li, P. Guo, and T. Kita, Synthesis and Thermoelectric Properties of Fine-Grained FeVSb System Half-Heusler Compound Polycrystals with High Phase Purity, J. Phys. D Appl. Phys., 2010, 43(41), p 415403.

    Article  Google Scholar 

  13. A.M. Adam, E.M.M. Ibrahim, A. Panbude, K. Jayabal, P. Veluswamy, and A.K. Diab, Thermoelectric Power Properties of Ge Doped PbTe Alloys, J. Alloys Compd., 2021, 872, p 159630.

    Article  CAS  Google Scholar 

  14. D.P. Young, P. Khalifah, R.J. Cava, and A.P. Ramirez, Thermoelectric Properties of Pure and Doped FeMSb (M= V, Nb), J. Appl. Phys., 2000, 87(1), p 317–321.

    Article  CAS  Google Scholar 

  15. B. Jiang et al., High Figure-of-Merit and Power Generation in High-Entropy GeTe-Based Thermoelectrics, Science, 2022, 377, p 208–213.

    Article  CAS  Google Scholar 

  16. B. Dado, Y. Gelbstein, and M.P. Dariel, Nucleation of Nano-Size Particles Following the Spinodal Decomposition in the Pseudo-Ternary Ge0.6Sn0.1Pb0.3 Compound, Scripta Materialia, 2010, 62(2), p 89–92.

    Article  CAS  Google Scholar 

  17. H.-T. Liu, Q. Sun, Y. Zhong, Q. Deng, L. Gan, F.-L. Lv, X.-L. Shi, Z.-G. Chen, and R. Ang, High-Performance in n-Type PbTe-Based Thermoelectric Materials Achieved by Synergistically Dynamic Doping and Energy Filtering, Nano Energy, 2022, 91, p 106706.

    Article  CAS  Google Scholar 

  18. G. Komisarchik, Y. Gelbstein, and D. Fuks, Solubility of Ti in Thermoelectric PbTe Compound, Intermetallics, 2017, 89, p 16–21.

    Article  CAS  Google Scholar 

  19. L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, and Z. Ren, Recent Progress in Half-Heusler Thermoelectric Materials, Mater. Res. Bull., 2016, 76, p 107–112.

    Article  CAS  Google Scholar 

  20. R.J. Quinn and J.W.G. Bos, Advances in Half-Heusler Alloys for Thermoelectric Power Generation, Mater. Adv., 2021, 2(19), p 6246–6266.

    Article  CAS  Google Scholar 

  21. A.M. Adam, A. El-Khouly, and A.K. Diab, Effects of Transition Metal Element Doping on the Structural and Thermoelectric Properties of n-Type Bi2xAgxSe3 Alloys, J. Alloys Compd., 2021, 851, p 156887.

    Article  CAS  Google Scholar 

  22. M.A. Almessiere, Y. Slimani, H. Güngüneş, A.D. Korkmaz, A. Baykal, A.V. Trukhanov, and G. Yasin, SrCoxZrxFe12− 2xO19 and SrNixZrxFe12−2xO19 Hexaferrites: A Comparison Study of AC Susceptibility, FC-ZFC and Hyperfine Interactions, Chin. J. Phys., 2020, 66, p 596–605.

    Article  CAS  Google Scholar 

  23. M.A. Darwish, H.F. Abosheiasha, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, K.A. Astapovich, and A.V. Trukhanov, Impact of the Zr-Substitution on Phase Composition, Structure, Magnetic, and Microwave Properties of the BaM Hexaferrite, Ceram. Int., 2021, 47(12), p 16752–16761.

    Article  CAS  Google Scholar 

  24. M.A. Almessiere, Y. Slimani, N.A. Algarou, M.A. Gondal, Y.S. Wudil, M. Younas, I.A. Auwal et al., Electronic, Magnetic, and Microwave Properties of Hard/Soft Nanocomposites Based on Hexaferrite SrNi0. 02Zr0. 02Fe11. 96O19 with Variable Spinel Phase MFe2O4 (M= Mn Co, Cu, and Zn), Ceram. Int., 2021, 47(24), p 35209–35223.

    Article  CAS  Google Scholar 

  25. A.M. Adam, Characterization of Thin Bi2Te3-Based Films and Effects of Heat Treatment on their Optical Properties, J. Alloys Compd., 2018, 765, p 1072–1081.

    Article  CAS  Google Scholar 

  26. R. Stern, B. Dongre, and G.K. Madsen, Extrinsic Doping of the Half-Heusler Compounds, Nanotechnology, 2016, 27(33), p 334002.

    Article  Google Scholar 

  27. A.M. Adam, A.K. Diab, M.A. El-Hadek, A.O. Sayed, and E.M.M. Ibrahim, Electrical and Thermoelectrical Properties of Bi2− xNaxTe3 Alloys, J. Alloys Compd., 2022, 920, p 165952.

    Article  CAS  Google Scholar 

  28. A.M. Adam, A. Elshafaie, A.E.M.A. Mohamed, P. Petkov, and E.M.M. Ibrahim, Thermoelectric Properties of Te Doped Bulk Bi2Se3 System, Mater. Res. Express, 2018, 5(3), p 035514.

    Article  Google Scholar 

  29. R. Hasan and S.C. Ur, Thermoelectric and Transport Properties of FeV1− xTixSb Half-Heusler System Synthesized by Controlled Mechanical Alloying Process, Electron. Mater. Lett., 2018, 14, p 725–732.

    Article  CAS  Google Scholar 

  30. M. Zou, J.F. Li, and T. Kita, Thermoelectric Properties of fine-Grained FeVSb half-Heusler Alloys Tuned to p-type by Substituting Vanadium with Titanium, J. Solid State Chem., 2013, 198, p 125–130.

    Article  CAS  Google Scholar 

  31. J. Yang, G.P. Meisner, and L. Chen, Strain Field Fluctuation Effects on Lattice Thermal Conductivity of ZrNiSn-Based thermoelectric Compounds, Appl. Phys. Lett., 2004, 85(7), p 1140–1142.

    Article  CAS  Google Scholar 

  32. E.M. Elsehly, E.M.M. Ibrahim, M.A. El-Hadek, A. El-Khouly, V. Khovaylo, Z.M. Elqahtani, N.G. Chechenin, and A.M. Adam, Annealing Effect on the Thermoelectric Properties of Multiwall Carbon Nanotubes, Physica E, 2023, 146, p 115566.

    Article  CAS  Google Scholar 

  33. M.A. Hassan, A. El-Khouly, E.M. Elsehly, E.N. Almutib, S.K. Elshamndy, I. Serhiienko, E.V. Argunov, A. Sedegov, D. Karpenkov, D. Pashkova, and M. Gorshenkov, Transport and Thermoelectric Properties of Melt Spinning Synthesized M2FeNiSb2 (M= Ti, Hf) Double Half-Heusler Alloys, Mater. Res. Bull., 2023, 164, p 112246.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [GRANT 3949]. Work at NUST MISIS was supported by Russian Science Foundation (grant No. 21-12-00405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hany M. Abd El-Lateef or A. M. Adam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Lateef, H.M.A., Adam, A.M., Diab, A.K. et al. Thermoelectric Properties of Zr-Doped FeV0.64Hf0.16Ti0.2Sb Half-Heusler Alloys. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08853-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08853-x

Keywords

Navigation