Skip to main content
Log in

Effect of Printing Parameters on Mechanical Properties and Dimensional Accuracy of 316L Stainless Steel Fabricated by Fused Filament Fabrication

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Fused Filament Fabrication (FFF) is one of the most popular extrusion based metal Additive Manufacturing (AM) Technologies, which has unique advantages in the rapid prototyping of thermoplastic materials, enabling the fabrication of metal parts with low mechanical anisotropy and no residual stress. However, the mechanical properties and dimensional accuracy of FFF printed parts are susceptible to changes in various printing parameters, which affects the FFF application in large-scale manufacturing. This study experimentally studied the effect of various printing parameters namely layer thickness (0.1, 0.2, 0.3, and 0.4 mm), raster angle (0°, 90°, + 45°/−45°, and 0°/90°), raster width (0.3, 0.35, 0.4, and 0.45 mm), and infill density (70, 80, 90, and 100%) on mechanical properties and dimensional accuracy of 316L stainless steel fabricated by FFF. The results showed that the infill density was the most important factor affecting the mechanical properties, followed by the layer thickness, and it was found that higher values of infill density and lower layer thickness result in better tensile strength. Layer thickness was also the main factor affecting the dimensional accuracy, which increased with the decrease in the layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source: Raise3D

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. I. Skawiński and T. Goetzendorf-Grabowski, FDM 3D printing Method Utility Assessment in Small RC Aircraft Design, Aircr. Eng. Aerosp. Tec., 2019, 91(6), p 865–872.

    Article  Google Scholar 

  2. D.K. Yadav, R. Srivastava, and S. Dev, Design & Fabrication of ABS Part by FDM for Automobile Application, Mater. Today. Proc., 2020, 26, p 2089–2093.

    Article  CAS  Google Scholar 

  3. Z. Peng, Q. Lv, J. Jing, H. Pei, Y. Chen, and E. Ivanov, FDM-3D Printing LLDPE/BN@GNPs Composites with Double Network Structures for High-Efficiency Thermal Conductivity and Electromagnetic Interference Shielding, Compos. Part B Eng., 2023, 251, p 110491.

    Article  CAS  Google Scholar 

  4. L. Hoffmann, J. Breitkreutz, and J. Quodbach, Investigation of the Degradation and In-Situ Amorphization of the Enantiomeric Drug Escitalopram Oxalate During Fused Deposition Modeling (FDM) 3D Printing, Eur. J. Pharm. Sci., 2023, 185, p 106423.

    Article  CAS  Google Scholar 

  5. E. Chen, Z. Xiong, X. Cai, S. Liu, X. Qin, J. Sun, X. Jin, and K. Sun, Bioresorbable PPDO Sliding-Lock Stents with Optimized FDM Parameters for Congenital Heart disease treatment, J. Mech. Behav. Biomed., 2023, 138, p 105609.

    Article  CAS  Google Scholar 

  6. R. Ramesh-Kumar, D. Rajesh, S. Kumaran, S. Ranjieth, M.I. Ali, and K. Karthik, Investigation on Tensile Characteristics of Femur Bone 3D Model by Using FDM, Mater. Today. Proc., 2022, 52, p 1504–1508.

    Article  CAS  Google Scholar 

  7. M.A. Wagner, A. Hadian, T. Sebastian, F. Clemens, T. Schweizer, M. Rodriguez-Arbaizar, E. Carreño-Morelli, and R. Spolenak, Fused Filament Fabrication of Stainless Steel Structures - From Binder Development to Sintered Properties, Addit. Manuf., 2022, 49, 102472.

    CAS  Google Scholar 

  8. H. Ramazani and A. Kami, Metal FDM A New Extrusion-Based Additive Manufacturing Technology for Manufacturing of Metallic Parts: A Review, Progr. Addit. Manuf., 2022, 7(4), p 609–626.

    Article  Google Scholar 

  9. S. Rouf, A. Raina, M.I. Ul Haq, N. Naveed, S. Jeganmohan, and A.F. Kichloo, 3D Printed Parts and Mechanical Properties: Influencing Parameters, Sustainability Aspects, Global Market Scenario, Challenges and Applications, Adv. Indus. Eng. Polym. Res., 2022, 5(3), p 143–158.

    Article  CAS  Google Scholar 

  10. X. Sun, M. Mazur, and C.-T. Cheng, A Review of Void Reduction Strategies in Material Extrusion-Based Additive Manufacturing, Addit. Manuf., 2023, 67, 103463.

    CAS  Google Scholar 

  11. F. Gorana, K.K. Sahu, and Y.K. Modi, Parameter Optimization for Dimensional Accuracy of Fused Deposition Modelling Parts, Mater. Today. Proc., 2023, 78, p 640–646.

    Article  Google Scholar 

  12. B. Zharylkassyn, A. Perveen, and D. Talamona, Effect of Process Parameters and Materials on the Dimensional Accuracy of FDM Parts, Mater. Today. Proc., 2021, 44, p 1307–1311.

    Article  Google Scholar 

  13. C. Tosto, J. Tirillò, F. Sarasini, and G. Cicala, Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts, Appl. Sci., 2021, 11(4), p 1444.

    Article  CAS  Google Scholar 

  14. T. Kurose, Y. Abe, M.V.A. Santos, Y. Kanaya, A. Ishigami, S. Tanaka, and H. Ito, Influence of the Layer Directions on the Properties of 316L Stainless Steel Parts Fabricated through Fused Deposition of Metals, Mater., 2020, 13(11), p 2493.

    Article  CAS  Google Scholar 

  15. D. Godec, S. Cano, C. Holzer, and J. Gonzalez-Gutierrez, Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17–4PH Stainless Steel, Materials, 2020, 13(3), p 774.

    Article  CAS  Google Scholar 

  16. M.Á. Caminero, A.R. Gutiérrez, J.M. Chacón, E. García-Plaza, and P.J. Núñez, Effects of Fused Filament Fabrication Parameters on the Manufacturing of 316L Stainless-Steel Components: Geometric and Mechanical Properties, Rapid. Prototyp. J., 2022, 28(10), p 2004–2026.

    Article  Google Scholar 

  17. S. Kheiri, H. Mirzadeh, and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI 316L Austenitic Stainless Steel via Cold Rolling and Reversion Annealing, Mater. Sci. Eng. A, 2019, 759, p 90–96.

    Article  CAS  Google Scholar 

  18. Raise3D MetalFuse, 2023. https://www.raise3d.cn/metalfuse/ (accessed 9 Sept 2023)

  19. Technical Data Sheet. Ultrafuse 316L 3D Printer Metal Filament, 2022. https://forward-am.com/material-portfolio/ultrafuse-filaments-for-fused-filaments-fabrication-fff/metal-filaments/ultrafuse-316l/ (accessed 9 Sept 2023)

  20. M.A. Wagner, J. Engel, A. Hadian, F. Clemens, M. Rodriguez-Arbaizar, E. Carreño-Morelli, J.M. Wheeler, and R. Spolenak, Filament Extrusion-Based Additive Manufacturing of 316L Stainless Steel: Effects of Sintering Conditions on the Microstructure and Mechanical Properties, Addit. Manuf., 2022, 59, 103147.

    CAS  Google Scholar 

  21. Y. Wang, L. Zhang, X. Li, and Z. Yan, On Hot Isostatic Pressing Sintering of Fused Filament Fabricated 316L Stainless Steel–Evaluation of Microstructure, Porosity, and Tensile Properties, Mater. Lett., 2021, 296, p 129854.

    Article  CAS  Google Scholar 

  22. J. Damon, S. Dietrich, S. Gorantla, U. Popp, B. Okolo, and V. Schulze, Process Porosity and Mechanical Performance of Fused Filament Fabricated 316L Stainless Steel, Rapid. Prototyp. J., 2019, 25(7), p 1319–1327.

    Article  Google Scholar 

  23. L. Ren, X. Zhou, Z. Song, C. Zhao, Q. Liu, J. Xue, and X. Li, Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System, Materials, 2017, 10(3), p 305.

    Article  Google Scholar 

  24. I. Buj-Corral, A. Bagheri, A. Domínguez-Fernández, and R. Casado-López, Influence of Infill and Nozzle Diameter on Porosity of FDM Printed Parts with Rectilinear Grid Pattern, Proc. Manuf., 2019, 41, p 288–295.

    Google Scholar 

  25. K.M. Agarwal, P. Shubham, D. Bhatia, P. Sharma, H. Vaid, and R. Vajpeyi, Analyzing the Impact of Print Parameters on Dimensional Variation of ABS specimens printed using Fused Deposition Modelling (FDM), Sens. Int., 2022, 3, 100149.

    Article  Google Scholar 

  26. M.M. Hanon, L. Zsidai, and Q. Ma, Accuracy Investigation of 3D printed PLA with Various Process Parameters and Different Colors, Mater. Today. Proc., 2021, 42, p 3089–3096.

    Article  CAS  Google Scholar 

  27. Y. Liu, M. Zhang, W. Shi, Y. Ma, and J. Yang, Study on performance optimization of 316L stainless steel parts by High-Efficiency Selective Laser Melting, Opt. Laser Technol., 2021, 138, 106872.

    Article  CAS  Google Scholar 

  28. N. Lecis, M. Mariani, R. Beltrami, L. Emanuelli, R. Casati, M. Vedani, and A. Molinari, Effects of Process Parameters, Debinding and Sintering on the Microstructure of 316L Stainless Steel Produced by Binder Jetting, Mater. Sci. Eng. A, 2021, 828, 142108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Jingguang Peng and Qingqing Pan for valuable discussions, to Wei Mai for providing experimental guidance, and to Qile Shi and Ziqi Liu for assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingqing Pan or Jingguang Peng.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Mai, W., Shi, Q. et al. Effect of Printing Parameters on Mechanical Properties and Dimensional Accuracy of 316L Stainless Steel Fabricated by Fused Filament Fabrication. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08848-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08848-8

Keywords

Navigation