Skip to main content
Log in

Effect of Infill Line Direction on Tensile and Flexural Properties of Poly(Lactic Acid) Samples during 3D Printing

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Polymer-based materials are emerging as a promising alternative to traditional materials in the aerospace and automotive industries. The growth of 3D printers utilizing polymer-based materials is rising, transforming them from hobby devices into industrial production equipment. Therefore, understanding the impact of production parameters on the mechanical strength of produced samples has become increasingly critical. This study aimed to evaluate the effect of infill line direction on the mechanical strength of poly(lactic acid) polymer-based samples, which are typically used in 3D printing production. Tensile and bending test samples were performed in six different infill line directions (0°, 45°, 90°, 0°/45°, 0°/90°, and 45°/135°) to investigate their effect on mechanical strength. The results indicate that the filling direction affects the mechanical strength of the parts produced in the 3D printer. In particular, samples produced with the 0° infill direction exhibited the highest tensile and flexural strengths. Microscopic images of the rupture surfaces support the results and show the adhesion and delamination between rasters and layers in different fill directions. Furthermore, the effect of filling direction on mechanical strength was statistically evaluated. The regression analysis supported the experimental findings. In addition, the effect of the filling direction on the flexural strength was found to be more significant and evident than on the tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Bulanda, M. Oleksy, R. Oliwa, G. Budzik, L. Przeszłowski, and A. Mazurkow, Biodegradable Polymer Composites Used in Rapid Prototyping Technology By Melt Extrusion Polymers (MEP), Polimery, 2020, 65(6), p 430–436. https://doi.org/10.14314/polimery.2020.6.2

    Article  CAS  Google Scholar 

  2. H.I. Medellin-Castillo, and J. Zaragoza-Siqueiros, Design and Manufacturing Strategies for Fused Deposition Modelling in Additive Manufacturing: A Review, Chin. J. Mech. Eng., 2019, 32, p 53. https://doi.org/10.1186/s10033-019-0368-0

    Article  CAS  Google Scholar 

  3. E.H. Baran and H.Y. Erbil, Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review, Colloids Interfaces, 2019, 3, p 43. https://doi.org/10.3390/colloids3020043

    Article  CAS  ADS  Google Scholar 

  4. A.P. Valerga, M. Batista, J. Salguero, and F. Girot, Influence of PLA Filament Conditions on Characteristics of FDM Parts, Materials, 2018 https://doi.org/10.3390/ma11081322

    Article  PubMed  PubMed Central  Google Scholar 

  5. D.T. Pham and R.S. Gault, A Comparison of Rapid Prototyping Technologies, Int. J. Mach. Tools Manuf, 1998, 38(10–11), p 1257–1287. https://doi.org/10.1016/S0890-6955(97)00137-5

    Article  Google Scholar 

  6. V. Kumar, R. Singh, I.P.S. Ayuja, and J.P. Davim, On Nanographene-Reinforced Polyvinylidene Fluoride Composite Matrix for 4D Application, J. Mater. Eng. Perform., 2021, 30, p 4860–4871.

    Article  CAS  Google Scholar 

  7. H.K. Dave, J.P. Davim (Ed.s), Fused Deposition Modeling Based 3D Printing, Springer, (2021), ISBN: 978-3- 030-68023-7

  8. M. Manjaiah, K. Raghavendra, N. Balashanmugagam, J.P. Davim (Ed,s), Additive Manufacturing, A Tool for Industrial Revolution 4.0, Elsevier, (2021), ISBN:9780128220566

  9. Juan Pou, Antonio Rivieiro, J.P. Davim (Ed.s), Additive Manufacturing, Elsevier, (2021), ISBN: 9780128184110

  10. M.M. Hanon, R. Marczis, and L. Zsida, Influence of the 3D Printing Process Settings on Tensile Strength of PLA and HT-PLA, Period. Polytech. Mech. Eng., 2021, 65(1), p 38–46.

    Article  Google Scholar 

  11. M. Suzuki, A. Yonezawa, K. Takeda, and A. Yamada, Evaluation of the Deterioration of the Mechanical Properties of Poly(lactic acid) Structures Fabricated by a Fused Filament Fabrication 3D Printer, Inventions, 2019, 4(1), p 21–37.

    Article  Google Scholar 

  12. L. Wang, W.M. Gramlich, and D.J. Gardner, Improving the Impact Strength of Poly(lactic acid) (PLA) in Fused Layer Modeling (FLM), Polymer, 2017, 114, p 242–248.

    Article  CAS  Google Scholar 

  13. V.E. Kuznetsov, A.N. Solonin, O.D. Urzhumtsev, R. Schilling, and A.G. Tavitov, Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process, Polymers, 2018, 10(3), p 313–324.

    Article  PubMed  PubMed Central  Google Scholar 

  14. B. Aloyaydi, S. Sivasankaran, and A. Mustafa, Investigation of Infill-patterns on Mechanical Response of 3D Printed Poly-lactic-acid, Polym. Test., 2020, 87, p 106557–106566.

    Article  CAS  Google Scholar 

  15. J. Ivorra-Martinez, L. Quiles-Carrillo, D.S. Lascano-Aimacaña, S. Ferrándiz Bou, and T. Boronat, Effect of Infill Parameters on Mechanical Properties in Additive Manufacturing, DYNA Ing. e Ind., 2020, 95(4), p 412–417.

    Google Scholar 

  16. B. Akhoundi and A.H. Behravesh, Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products, Exp. Mech., 2019, 59, p 883–897.

    Article  Google Scholar 

  17. A.B. Rankouhi, S. Javadpour, F. Delfanian, and T. Letcher, Failure Analysis and Mechanical Characterization of 3D Printed ABS with Respect to Layer Thickness and Orientation, J. Fail. Anal. Prev., 2016, 16(3), p 467–481.

    Article  Google Scholar 

  18. C. Casavola, A. Cazzato, V. Moramorco, and C. Pappalettere, Orthotropic mechanical Properties of Fused Deposition Modelling Parts Described by Classical Laminate Theory, Mater. Des., 2016, 90, p 453–458.

    Article  Google Scholar 

  19. E. Ulu, E. Korkmaz, K. Yay, O.B. Ozdoganlar, and L.B. Kara, Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization, J. Mech. Des., 2015, 137(11), p 1175–1184.

    Article  Google Scholar 

  20. T. Yao, Z. Deng, K. Zhang, and S. Li, A Method To Predict The Ultimate Tensile Strength of 3D Printing Polylactic Acid (PLA) Materials with Different Printing Orientations, Compos. B, 2019, 163, p 393–402.

    Article  CAS  Google Scholar 

  21. A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31, p 287–295.

    Article  CAS  Google Scholar 

  22. B.M. Tymrak, M. Kreiger, and J.M. Pearce, Mechanical Properties of Components Fabricated with Open-Source 3-D Printers Under Realistic Environmental Conditions, Mater. Des., 2014, 58, p 242–246.

    Article  CAS  Google Scholar 

  23. L. Marşavina, C. Vălean, M. Mărghitaş, E. Linul, N. Razavi, F. Berto, and R. Brighenti, Effect of The Manufacturing Parameters on the Tensile and Fracture Properties Of FDM 3D-printed PLA Specimens, Eng. Fract. Mech., 2022, 274, p 108766.

    Article  Google Scholar 

  24. S.L. Rodríguez-Reyna, C. Mata, J.H. Díaz-Aguilera, H.R. Acevedo-Parra, and F. Tapia, Mechanical Properties Optimization for PLA, ABS and Nylon+ CF Manufactured by 3D FDM Printing, Mater. Today Commun., 2022, 33, p 104774.

    Article  Google Scholar 

  25. V.V. Rubashevskyi, S.M. Shukayev, and A.M. Babak, Effect of 3D Printing Process Parameters on the Mechanical Characteristics of Graphite-Modified Polylactide in Compression Tests, Strength Mater., 2022, 54(6), p 1019–1026.

    Article  CAS  Google Scholar 

  26. G. Morettini, M. Palmieri, L. Capponi, and L. Landi, Comprehensive Characterization of Mechanical and Physical Properties of PLA Structures Printed by FFF-3D-printing process in Different Directions, Prog. Addit. Manuf., 2022, 7, p 1111–1122.

    Article  Google Scholar 

  27. J.P. Davim (Ed.) Design of Experiments in ProductionEngineering. Springer, (2016), ISBN 978-3-319-23837-1

  28. I. Mukharjee and P.K. Ray, A Review of Optimization Techniques in Metal Cutting Processes, Comput. Ind. Eng., 2006, 50(1–2), p 15–34.

    Article  Google Scholar 

  29. J.P. Davim (Ed.), Statistical and Computational Techniques in Manufacturing, Springer, (2012), ISBN:978-3-642-25859-6.

  30. A.P. Markopoulos, W. Habrat, N.I. Galanis, N.E. Karkalos, Modelling and Optimization of Machining with the Use of Statistical Methods and Soft Computing, Design of Experiments in Production Engineering, Davim J. P., Springer, October (2015), 39–88, ISBN 978-3-319-23837-1

  31. P. Sahoo and T.K.R. Barman, Response Surface Modeling of Fractal Dimension in WEDM, Design of Experiments in Production Engineering, Davim J. P., Springer, October (2015), 134–149, ISBN 978-3-319-23837-1

  32. A.R. Prajapati, S.R. Rajpurohit, M. Somireddy, Computational Models: 3D Printing, Materials and Structures, Fused Deposition Modeling Based 3D Printing, Dave H. K., Davim J. P., Springer, April (2021), 403-418, ISBN 978-3-030-68024-4

  33. A. Dey and N. Yodo, A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics, J. Manuf. Mater. Process., 2019, 3(3), p 64–94.

    CAS  Google Scholar 

  34. D. Popescu, A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, FDM Process Parameters İnfluence over rhe Mechanical Properties of Polymer Specimens: A Review, Polym. Testing, 2018, 69, p 157–166.

    Article  CAS  Google Scholar 

  35. J.M. Chacon, M.A. Caminero, E. Garcia-Plaza, and P.J. Nunez, Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection, Mater. Des., 2017, 124, p 143–157.

    Article  CAS  Google Scholar 

  36. V. Mazzanti, L. Malagutti, and F. Mollica, FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties, Polymers, 2019, 11(7), p 1094–1116.

    Article  PubMed  PubMed Central  Google Scholar 

  37. M.L. Dezaki and M.K.A.M. Ariffin, The Effects of Combined Infill Patterns on Mechanical Properties in FDM Process, Polymers, 2020, 12(2), p 2792–2812.

    Article  CAS  Google Scholar 

  38. A. Lanzotti, M. Grasso, G. Staiano, and M. Martorelli, The İmpact of Process Parameters on Mechanical Properties of Parts Fabricated İn PLA with an Open-Source 3-D Printer, Rapid Prototyp. J., 2015, 21(5), p 604–617.

    Article  Google Scholar 

  39. B.G. Çakan, Effects of Raster Angle on Tensile and Surface Roughness Properties of Various FDM Filaments, J. Mech. Sci. Technol., 2021, 35(8), p 3347–3353.

    Article  Google Scholar 

  40. A. Bakır, R. Reshani, S. Özerinç, Mechanical Properties of 3D-Printed Elastomers Produced by Fused Deposition Modeling, Fused Deposition Modeling Based 3D Printing, Dave H. K., Davim J. P., Springer, April (2021), 107–130, ISBN 978-3-030-68024-4

  41. A.F. Afrose, S.H. Masood, P. Iovenitti, M. Nikzad, and I. Sbarski, Effects of Part Build Orientations on Fatigue Behaviour of FDM-Processed PLA Material, Prog. Addit. Manuf., 2016, 1, p 21–28.

    Article  Google Scholar 

  42. D. Rahmatabadi, A. Aminzadeh, M. Aberoumand, M. Moradi, Mechanical Characterization of Fused Deposition Modeling (FDM) 3D Printed Parts, Fused Deposition Modeling Based 3D Printing, Dave H. K., Davim J. P., Springer, April (2021), 131–150, ISBN 978-3-030-68024-4

  43. M. Tutar, A Comparative Evaluation of the Effects of Manufacturing Parameters on Mechanical Properties of Additively Manufactured PA and CF-Reinforced PA Materials, Polymers, 2023, 15(1), p 38–52.

    Article  CAS  Google Scholar 

  44. D. Stechina, S.M. Mendoza, H.D. Martin, C.N. Maggi, and M.T. Piovan, Determination of Elastic Properties of Polymeric Pieces Constructed by 3D Printing, Subject. Bend. Rev. Mater., 2020 https://doi.org/10.1590/S1517-707620200002.1017

    Article  Google Scholar 

  45. O.S. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, and B.A. Pregger, Effect of layer orientation on mechanical properties of rapid prototyped samples, Mater. Manuf. Process., 2000, 15(1), p 107–122.

    Article  CAS  Google Scholar 

  46. C Ziemian, M Sharma, S. Ziemi, Anisotropic Mechanical Properties of ABS Parts Fabricated by Fused Deposition Modelling. In: Mechanical Engineering. InTech Charlotte, NC, (2012) https://doi.org/10.5772/34233

  47. E. Yarar and S. Karabay, Investigation of the Effects of Ultrasonic Assisted Drilling on Tool Wear and Optimization of Drilling Parameters, CIRP J. Manuf. Sci. Technol., 2020, 31, p 265–280.

    Article  Google Scholar 

  48. E. Yarar, F.G. Koç, F. Angigün, Ş Demirci, and T. Makas, Multi-Response Optimization and Machinability Research of Forging and Heat Treatment Parameters in Piston Production, Multiscale Multidiscip. Model. Exper. Des., 2023, 6, p 305–317.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Eser Yarar for his support in developing the regression analysis and Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alp Eren Sahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, A.E. Effect of Infill Line Direction on Tensile and Flexural Properties of Poly(Lactic Acid) Samples during 3D Printing. J. of Materi Eng and Perform 33, 1202–1209 (2024). https://doi.org/10.1007/s11665-023-08813-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08813-5

Keywords

Navigation