Skip to main content
Log in

Evaluation of a Cast Al-Mg2Si Composite for Automobile Disk-Brake Rotor Application

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This investigation involved the development and characterization (microstructure, mechanical properties, and dry sliding wear characteristics) of Al-Mg2Si composites for automobile applications. Consequently, the performance analysis of the Al-Mg2Si composites was conducted considering motorcycle disk brake rotor application. The digital logic method (DLM), a material selection process, was employed to compare the performance of Al-Mg2Si composites with traditional rotor materials, cast iron, and stainless steel. The motorcycle disk brake operation was simulated with steel and Al-20wt.% Mg2Si composite rotor to establish the findings of performance analysis. The DLM analysis revealed that the Al-20wt.% Mg2Si composite had a technical performance index of 73.65, while steel had a technical performance index of 78.10. Additionally, the energy efficiency index (EEI) for the composite and steel stood at 31.79 and 100, respectively. Furthermore, the composite exhibited much lower CO2 and CO emissions compared to steel, with values of 0.087 and 0.0026 g/km versus 0.276 and 0.0082 g/km, respectively. The simulation results indicated that both the stainless steel and the Al-20Mg2Si composite rotor exhibited structural suitability. In the Al-20Mg2Si composite rotor, the induced temperature ranged from 35.4 to 60.3 °C, while the heat flux ranged from 1.462 × 103 to 3.64 × 105 W/m2. On the other hand, the stainless steel rotor experienced induced temperature ranging from 41.55 to 87.4 °C, and heat flux ranging from 4.0 × 102 to 1.64 × 105 W/m2. The composite rotor demonstrated a lower induced temperature and higher heat flux, which in turn reduced the probability of both direct and indirect thermal damage and improved structural integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. M. Verbrugge, T. Lee, P.E. Krajewski, A.K. Sachdev, C. Bjelkengren, R. Roth, and R. Kirchain, Mass Decompounding and Vehicle Lightweighting, Mater. Sci. Forum, 2009, 618, p 411–418.

    Article  Google Scholar 

  2. H. Liaquat, X. Shi, K. Yang, Y. Huang, X. Liu, and Z. Wang, Tribological Behavior of TiAl Metal Matrix Composite Brake Disk With TiC Reinforcement Under Dry Sliding Conditions, J. Mater. Eng. Perform., 2017, 26, p 3457–3464.

    Article  CAS  Google Scholar 

  3. C. Su, X. Sang, S. Niu, and R. Ren, A comparison of the Abrasive Wear Behaviors of Cast Iron and Cast Steel Materials, J. Mater. Eng. Perform., 2021, 30, p 4572–4582.

    Article  CAS  Google Scholar 

  4. P. Biswas, A. Biswas, R. Bhandari, and M.K. Mondal, Microstructure, Mechanical Properties and Fracture Behavior of in-situ Al-5Mg-Al4Sr Composites, Mater. Today Commun., 2018, 15, p 190–198.

    Article  CAS  Google Scholar 

  5. V.S. Mann and O.P. Pandey, Influence of Two Different Corundum Particle Size Ranges on the Tribological Properties of LM30 Aluminum Alloy/Corundum Composites at Elevated Temperatures, J. Mater. Eng. Perform., 2023, 32, p 917–933.

    Article  CAS  Google Scholar 

  6. W. Jiang, J. Zhu, G. Li, F. Guan, Y. Yu, and Z. Fan, Enhanced Mechanical Properties of 6082 Aluminum Alloy via SiC Addition Combined With Squeeze Casting, J. Mater. Sci. Technol., 2021, 88, p 119–131.

    Article  CAS  Google Scholar 

  7. A. Macke, B.F. Schultz, P.K. Rohatgi, and N. Gupta, Metal Matrix Composites for Automotive Applications”, Structural Integrity and Crashworthiness; John Wiley & Sons, Advanced Composite Materials for Automotive Applications, 2013. https://doi.org/10.1002/9781118535288.ch13

    Book  Google Scholar 

  8. R. Kumar, D. Shringi, and K.N. Bairwa, Numerical Validation of Thermal Conductivity of Al6061 Based Hybrid Nano Metal Matrix Composite Filled With Nanoparticles of Ni and Cr, Mater. Res. Express, 2021, 8, 115011.

    Article  CAS  Google Scholar 

  9. A. Miranda, N. Barekar, and B.J. McKay, MWCNTs and their Use in Al-MMCs for Ultra-High Thermal Conductivity Applications: A Review, J. Alloys Compd., 2019, 774, p 820–840.

    Article  CAS  Google Scholar 

  10. R. Bhandari, P. Biswas, M. Mallik, and M.K. Mondal, Microstructure Based Numerical Simulation of the Micromechanics and Fracture in Hypereutectic Al-Mg2Si Composites, Mater. Chem. Phys., 2023, 297, 127427.

    Article  CAS  Google Scholar 

  11. P. Biswas, M. Paliwal, and M.K. Mondal, Thermochemical Behaviour, Solidification, Thermal Stability and Oxidation of Al-Mg2Si Composites: an Experimental and Thermodynamic Study, Mater. Today Commun., 2023, 35, p 105913.

    Article  CAS  Google Scholar 

  12. A. Moharami, A. Razaghian, B. Babaei, O.O. Ojo, and M. Šlapáková, Role of Mg2Si Particles on Mechanical, Wear, and Corrosion Behaviors of Friction Stir Welding of AA6061-T6 and Al-Mg2Si Composite, J. Compos. Mater., 2020, 54, p 4035–4057.

    Article  CAS  Google Scholar 

  13. H. Yu, S. Shu, X. Xiong, and Q. Xie, Simulation Design and Performance Study of Graphene/Mg2Si/Si Heterojunction Photodetector, Appl. Phys. A, 2021, 127, p 548.

    Article  CAS  Google Scholar 

  14. A.S. Gouralnik, A.V. Shevlyagin, I.M. Chernev, A.Y. Ustinov, A.V. Gerasimenko, and A.K. Gutakovskii, Synthesis of Crystalline Mg2Si Films by Ultrafast Deposition of Mg on Si (111) and Si (001) at High Temperatures. Mg/Si Intermixing and Reaction Mechanisms”, Mater. Chem. Phys., 2021, 258, p 123903.

    Article  CAS  Google Scholar 

  15. Y. Sun, C. Li, Y. Liu, R. Ding, X. Liu, S.H. Kim, and L. Yu, The Contribution of Aluminides to Strength of Al–Mg2Si–Cu–Ni Alloys at Room and Elevated Temperatures, Mater. Sci. Eng. A, 2021, 817, 141381.

    Article  CAS  Google Scholar 

  16. P. Xiao, Y. Gao, P. Mao, C. Yang, K.S. Tun, S. Yang, X. Huang, Q. Liu, S. Zhao, and M. Gupta, Revealing Modification Mechanism of Mg2Si in Sb Modified Mg2Si/AZ91 Composites and its Effect on Mechanical Properties, J. Alloys Compd., 2021, 850, 156877.

    Article  CAS  Google Scholar 

  17. P. Biswas, M.K. Mondal, and D. Mandal, Effect of Mg2Si Concentration on the Dry Sliding wear Behavior of Al–Mg2Si Composite, J. Tribol., 2019, 141, 081601.

    Article  CAS  Google Scholar 

  18. S. Farahany, H. Ghandvar, M. Bozorg, A. Nordin, A. Ourdjini, and E. Hamzah, Role of Sr on Microstructure, Mechanical Properties, Wear and Corrosion Behaviour of an Al–Mg2Si–Cu in-situ Composite, Mater. Chem. Phys., 2020, 239, 121954.

    Article  CAS  Google Scholar 

  19. M.R. Moazami, A. Razaghian, H. Mirzadeh, M. Emamy, and A. Moharami, Tribological Behavior of as-cast and Wrought Al–Mg2Si Hybrid Composites Reinforced by Ti-based Intermetallics, J. Mater. Res. Technol., 2022, 20, p 1315–1327.

    Article  CAS  Google Scholar 

  20. A. Akrami, N. Nasiri, and V. Kulish, Fractal Dimension Analysis of Mg2Si Particles of Al–15% Mg2Si Composite and its Relationships to Mechanical Properties, Results Mater., 2022, 7, 100118.

    Article  Google Scholar 

  21. P. Biswas, D. Mandal, and M.K. Mondal, Failures Analysis of in-situ Al–Mg2Si Composites Using Actual Microstructure Based Model, Mater. Sci. Eng. A, 2020, 797, 140155.

    Article  CAS  Google Scholar 

  22. P. Biswas, D. Mandal, and M.K. Mondal, Micromechanical Response of Al–Mg2Si Composites Using Approximated Representative Volume Elements (RVEs) Model, Mater. Res. Express, 2019, 6, p 1165c6.

    Article  Google Scholar 

  23. P. Biswas, D. Mandal, and M.K. Mondal, Compressive Failure Analysis of in-situ Al-Mg2Si Composites: Experiment and Finite Element Modelling, Eng. Fract. Mech., 2023, 277, 108986.

    Article  Google Scholar 

  24. M.R. Moazami, A. Razaghian, A. Moharami, H. Mirzadeh, and M. Emamy, Enhancing the Elevated Temperatures tribological Properties of Al–Mg2Si Composites by in-situ Addition of Ti-based Intermetallics and Hot Working, J. Mater. Res. Technol., 2022, 21, p 1381–1394.

    Article  CAS  Google Scholar 

  25. M. Chegini, M.H. Shaeri, R. Taghiabadi, and S. Cheginy, Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of Thermally-Homogenized Al–Mg2Si Composites, Mater. Chem. Phys., 2021, 259, 124200.

    Article  CAS  Google Scholar 

  26. S.C. Ram, K. Chattopadhyay, and A. Bhushan, High Temperature Dry Sliding Reciprocating Wear Behavior of Centrifugally cast A356-Mg2Si in-situ Functionally Graded Composites, Silicon, 2022, 15(2), p 1063–1083.

    Article  Google Scholar 

  27. S.C. Ram, K. Chattopadhyay, and I. Chakrabarty, Microstructures and High Temperature Mechanical Properties of A356-Mg2Si Functionally Graded Composites in as-cast and Artificially Aged (T6) Conditions, J. Alloys Compd., 2019, 805, p 454–470.

    Article  CAS  Google Scholar 

  28. N. Stojanovic, A. Belhocine, O.I. Abdullah, and I. Grujic, The Influence of the Brake Pad Construction on Noise Formation, People’s Health and Reduction Measures, Environ. Sci. Pollut. Res., 2023, 30(6), p 15352–15363.

    Article  CAS  Google Scholar 

  29. M.H. Pranta, M.S. Rabbi, S.C. Banik, M.G. Hafez, and Y.M. Chu, A Computational Study on Structural and Thermal Behavior of Modified Disk Brake Rotors, Alexandria Eng. J., 2022, 61, p 1882–1890.

    Article  Google Scholar 

  30. T. Bheda, D. Joshi, P.K. Dinesh Kumar, and S. Darius Gnanaraj, Modeling and Simulation of Brake Disc Using Lightweight Materials, J. Inst. Eng. India Ser. D., 2022. https://doi.org/10.1007/s40033-022-00425-y

    Article  Google Scholar 

  31. V. Ahlawat, U. Yadav, S. Nain, and T. Singh, Potential of White Ark Shell Powder in Automotive Brake Friction Composites, J. Mater. Eng. Perform., 2021, 30, p 4053–4062.

    Article  CAS  Google Scholar 

  32. A. Belhocine and N.M. Ghazaly, Effects of Young’s Modulus on Disc Brake Squeal Using Finite Element Analysis, Int. J. Acoust. Vib., 2016, 31(3), p 292–300.

    Google Scholar 

  33. A. Belhocine and A. Afzal, Finite Element Modeling of Thermomechanical Problems Under the Vehicle Braking Process, Multiscale Multidiscip. Model. Exp. Des., 2020, 3, p 53–76.

    Article  Google Scholar 

  34. A. Wank, C. Schmengler, A. Krause, K. Müller-Roden, and T. Wessler, Environmentally Friendly Protective Coatings for Brake Disks, J. Therm. Spray Technol., 2022, 32(2–3), p 443–455.

    Google Scholar 

  35. H.F. Kayıran, Rotating Brake Discs with Carbon Laminated Composite and e-Glass Epoxy Material: A Mathematical Modeling, Iran Polym. J., 2023, 32(4), p 457–468.

    Article  Google Scholar 

  36. W. Bena and G. Sirata, Coupled Thermal Stress Analysis of volvo Truck Disc Brake, Adv. Mater. Sci. Eng., 2022. https://doi.org/10.1155/2022/7945264

    Article  Google Scholar 

  37. Y.M. Goh and C.F. Ng, An Expert System for Material Selection and Process Selection in Product Design, Mater. Des., 2014, 55, p 13–27.

    Google Scholar 

  38. F.C. Campbell, Design Methodologies for Material Selection, Mater. Des., 2005, 26(8), p 635–641.

    Google Scholar 

  39. M.F. Ashby, Materials Selection in Mechanical Design”, 3rd ed. MRS Bull, Elsevier Butterworth-Heinemann, 2005.

    Google Scholar 

  40. M. Taktak and S. Sidhom, A Review on Materials Selection in Product Design: Roles, Methods, and Challenges, Mater. Des., 2017, 123, p 195–204.

    Google Scholar 

  41. M. Bicer, C. Demir, and A.F. Guneri, An Integrated Approach to Material Selection in Design Based on a New MCDM Model Combining Modified Digital Logic, Interval Evaluations, and Fuzzy Logic, J. Intell. Manuf., 2017, 28(2), p 457–474.

    Google Scholar 

  42. R. Anbiah and K. Rajkumar, Material Selection for Automotive Components Using Digital Logic Methodology, Procedia Technol., 2016, 25, p 1343–1350.

    Google Scholar 

  43. R. Hauser and D. Clausing, The House of Quality, Harv. Bus. Rev., 1988, 66(3), p 63–73.

    Google Scholar 

  44. B. Standard (1988) Specification for Aluminium and Aluminium Alloy Ingots and Castings for General Engineering Purposes. British Standard Institution, BS 1490

  45. ASTM E9. (2001) Standard test methods for tension testing of metallic materials.” Annual book of ASTM standards, West Conshohocken, PA, USA

  46. ASTM Standard. (2010) Standard practice for compression tests of metallic materials at elevated temperatures with conventional or rapid heating rates and strain rates.” Annu Book ASTM Standards, ASTM International, West Conshohocken, PA, USA

  47. ASTM G99-17. (2017) Standard Test Method for Wear Testing with a Pin-On-Disk Apparatus.” American Society for Testing and Materials, West Conshohocken, Pennsylvania

  48. S. Kangishwar, N. Radhika, A.A. Sheik, A. Chavali, and S. Hariharan, A Comprehensive Review on Polymer Matrix Composites: Material Selection, Fabrication, and Application, Polym. Bull., 2022, 80(1), p 47–87.

    Article  Google Scholar 

  49. A. Chen and F. Kienhöfer, The Failure Prediction of a Brake Disc due to Nonthermal or Mechanical Stresses, Eng. Fail. Anal., 2021, 124, 105319.

    Article  Google Scholar 

  50. D. Li, S. Wang, X. Fang, Y. Guo, N. Hu, and D. Zhang, Research Progress of Temperature Field Calculation of Disc Brake Braking Interface Based on Numerical Analysis, Inst. Mech. Eng. Pt D J. Automobile Eng, Proc, 2022. https://doi.org/10.1177/0954407022112828

    Book  Google Scholar 

  51. J. Fan, N. Wang, X. Wang, Y. Hao, S. Wu, Y. Wang, and J. Liu, Effect of the Coke/Flake Graphite Ratio on The Microstructure and Properties of Cu-Based Powder Metallurgy Friction Materials, J. Mater. Eng. Perform., 2022, 31, p 10378–10392.

    Article  CAS  Google Scholar 

  52. Miranda, M. H. P., do Nascimento Rodrigues, R., de Araújo Bezerra, R., Lamary, P. M. C., & de Oliveira Neto, R. A. (2020) Numerical investigation of material properties and operating parameters effects in generating motorcycle break squeal using the finite element method. J. Braz. Soc. Mech. Sci. Eng. 42: 239.

  53. P. S. Samuel Ratna Kumar, P. M. Mashinini, R. Vaira Vignesh, 2023 Overview of Lightweight Metallic Materials. In: Advances in Processing of Lightweight Metal Alloys and Composites, Springer: Singapore

  54. T. Miyauchi, J. Nakayama, N. Fujiwara, K. Shimoda, S. Nakazawa, and S. Fukagai, Friction and Wear Performance of Nickel and Molybdenum-Reduction Cast Iron Composite Brake Blocks Including Ceramic Foams, Wear, 2013, 302, p 1436–1443.

    Article  CAS  Google Scholar 

  55. C. Ji, Q. Li, Y. Wang, Q. M. Wang, (2017) Corrosion evaluation of additive manufacture metal alloy by nondestructive line-focused transducer. In: 2017 IEEE International Ultrasonics Symposium (IUS), IEEE.

  56. J. Rondal and K.J. Rasmussen, On the Strength of Cast Iron Columns, J. Constr. Steel Res., 2004, 60, p 1257–1270.

    Article  Google Scholar 

  57. M.P. Sealy, H. Hadidi, L.D. Sotelo, W.L. Li, J.A. Turner, and J.A. McGeough, Compressive Behavior of 420 Stainless Steel After Asynchronous Laser Processing, CIRP Ann., 2020, 69, p 169–172.

    Article  Google Scholar 

  58. A.R. Riahi and A.T. Alpas, Wear Map for Grey Cast Iron, Wear, 2003, 255, p 401–409.

    Article  CAS  Google Scholar 

  59. S.P. Brühl, R. Charadia, C. Sanchez, and M.H. Staia, Wear Behavior of Plasma Nitrided AISI 420 Stainless Steel, Int. J. Mater. Res., 2008, 99, p 779–786.

    Article  Google Scholar 

  60. T. Matsushita, A.G. Saro, L. Elmquist, and A.E. Jarfors, On the Specific Heat and Thermal Diffusivity of CGI and SGI Cast Irons, Int. J. Cast Met. Res., 2017, 30, p 276–282.

    Article  CAS  Google Scholar 

  61. Y. Geng, M. Akbari, A. Karimipour, A. Karimi, A. Soleimani, and M. Afrand, Effects of the Laser Parameters on the Mechanical Properties and Microstructure of Weld Joint in Dissimilar Pulsed Laser Welding of AISI 304 and AISI 420, Infrared Phys. Technol., 2019, 103, 103081.

    Article  CAS  Google Scholar 

  62. D.B. Downie and J.F. Martin, An adiabatic calorimeter for heat-capacity measurements between 6 and 300 K. The molar heat capacity of aluminium, J. Chem. Thermodyn., 1980, 12, p 779–786.

    Article  CAS  Google Scholar 

  63. B.C. Gerstein et al., Thermal Study of Groups II–IV Semiconductors. Lattice Heat Capacities and Free Energies of Formation. Heat Capacity of Mg2Si From 15–300 K, J. Chem. Phys., 1967, 47(6), p 2109–2115.

    Article  CAS  Google Scholar 

  64. D. Holmgren, Review of thermal conductivity of cast iron, Int. J. Cast Met. Res., 2005, 18, p 331–345.

    Article  CAS  Google Scholar 

  65. J. Carvill, (1994) Thermodynamics and heat transfer.” In Mechanical Engineer’s Data Handbook; Butterworth-Heinemann, 131.

  66. G. Li, J. He, Q. An, S.I. Morozov, S. Hao, P. Zhai, Q. Zhang, W.A. Goddard III., and G.J. Snyder, Dramatically reduced lattice thermal conductivity of Mg2Si thermoelectric material from nanotwinning, Acta Mater., 2019, 169, p 9–14.

    Article  CAS  Google Scholar 

  67. T. Matsushita, E. Ghassemali, A.G. Saro, L. Elmquist, and A.E. Jarfors, On thermal expansion and density of CGI and SGI cast irons, Metals, 2015, 5, p 1000–1019.

    Article  Google Scholar 

  68. M. Sadhasivam and V.K. Jain, Enhanced Mechanical and Thermal Properties of AISI 420/TiB2 Composites Fabricated by Liquid Metallurgy Route, Compos. Commun., 2021, 23, 100550.

    Article  Google Scholar 

  69. J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou, Microstructural development of Al–15wt.% Mg2Si in situ composite with mischmetal addition, Mater. Sci. Eng., 2000, 281, p 104–112.

    Article  Google Scholar 

  70. A. Kalemtas, G. Topates, O. Bahadir, K.A. Pinar, and H. Mandal, Thermal properties of pressureless melt infiltrated AlN–Si–Al composites, Trans. Nonferrous Met. Soc. China, 2013, 23, p 1304–1313.

    Article  CAS  Google Scholar 

  71. V. Rudnev, G. E. Totten, (2014) Metallurgy of Induction Melting Processes for Iron and Non-Iron Materials.” ASM Handbook Induction Heating and Heat Treatment.

  72. G.H. Farrahi, A. Fallah, and K.R. Kashyzadeh, Fracture toughness Evaluation of 1.4841 Bolt Subjected to Simultaneous Effects of Creep and Hydrogen Embrittlement Phenomena Using Small Punch Test: A Case Study in a Superheater of a Petrochemical Unit, Eng. Fail. Anal., 2023, 144, p 106956.

    Article  CAS  Google Scholar 

  73. S. Kumar, T. Rajagopal, 2020 Braking system for ATV.” SAE Technical Paper 2020-01-1611.

  74. M. Boniardi, F. D’Errico, C. Tagliabue, G. Gotti, and G. Perricone, Failure analysis of a motorcycle brake disc, Eng. Fail. Anal., 2006, 13, p 933–945.

    Article  Google Scholar 

  75. M. Vite-Torres, J.R. Laguna-Camacho, R.E. Baldenebro-Castillo, E.A. Gallardo-Hernandez, E.E. Vera-Cárdenas, and J. Vite-Torres, Study of Solid Particle Erosion on AISI 420 Stainless Steel Using Angular Silicon Carbide and Steel Round Grit Particles, Wear, 2013, 301, p 383–389.

    Article  CAS  Google Scholar 

  76. K.H. Anantha, C. Örnek, S. Ejnermark, A. Thuvander, A. Medvedeva, J. Sjöström, and J. Pan, Experimental and Modelling Study of the Effect of Tempering on the Susceptibility to Environment-Assisted Cracking of AISI 420 Martensitic Stainless Steel, Corros. Sci., 2019, 148, p 83–93.

    Article  Google Scholar 

  77. P.J. Blau, B.C. Jolly, J. Qu, W.H. Peter, and C.A. Blue, Tribological investigation of titanium-based materials for brakes, Wear, 2007, 263, p 1202–1211.

    Article  CAS  Google Scholar 

  78. N. R. Nanjappan, V. Krishnaraj, P. J. Davim, 2015 Metal Matrix Composites: Synthesis, Wear Characteristics, Machinability Study of MMC Brake Drum. In: ICTIEE 2014, Springer: New Delhi, India

  79. N. Tenaglia, R. Boeri, G. Rivera, and J. Massone, Study of shrinkage porosity in spheroidal graphite cast iron, Int. J. Cast Met. Res., 2016, 29, p 112–120.

    Article  CAS  Google Scholar 

  80. P. Biswas, M.K. Mondal, H. Roy, and D. Mandal, Microstructural Evolution and Hardness Property of In Situ Al–Mg2Si Composites Using One-Step Gravity Casting Method, Can. Metall. Q., 2017, 56, p 340–348.

    Article  CAS  Google Scholar 

  81. H. Wang, H. Zhang, Z. Cui, Z. Chen, D. Chen, and H. Wang, Investigation on the High-Temperature Ductility and Fracture Mechanisms of an In-Situ Particle-Reinforced Al Matrix Composite 7075Al/TiB2, Mater. Sci. Eng. A, 2019, 764, 138263.

    Article  CAS  Google Scholar 

  82. A.H. Baghdadi, A. Rajabi, N.F. Selamat, Z. Sajuri, and M.Z. Omar, Effect of Post-Weld Heat Treatment on the Mechanical Behavior and Dislocation Density of Friction Stir Welded Al6061, Mater. Sci. Eng. A, 2019, 754, p 728–734.

    Article  CAS  Google Scholar 

  83. R. Rodrıguez-Castro, R.C. Wetherhold, and M.H. Kelestemur, Microstructure and mechanical behavior of functionally graded Al A359/SiCp composite, Mater. Sci. Eng. A, 2002, 323, p 445–456.

    Article  Google Scholar 

  84. A. Slipenyuk, V. Kuprin, Y. Milman, J.E. Spowart, and D.B. Miracle, The Effect of Matrix to Reinforcement Particle Size Ratio (PSR) on the Microstructure and Mechanical Properties of a P/M Processed AlCuMn/SiCp MMC, Mater. Sci. Eng. A, 2004, 381, p 165–170.

    Article  Google Scholar 

  85. H. K. Kim, H. Chang, S. B. Jung, (2012.) A Study on friction materials for brake disc rotors. Mater. Trans

  86. H. C. Shin, Y. C. Lim, S. Nahm, (2010) A Study on the Effect of Brake Rotor Material on Noise, Vibration, and Harshness (NVH) Performance. Int. J. Automot. Technol. 2010.

  87. A. Aligeti, A. Jayaraman, R. Singh, (2017) The Effect of Rotor Material on Brake Noise, Vibration, and Harshness. SAE Int. J. Passeng. Cars-Mech. Syst. 2017.

  88. P. Biswas, K.D. Prasadu, and M.K. Mondal, Effect of Bi Addition on Microstructure and Mechanical Properties of Hypereutectic Al-17.6 Si Alloy, Mater. Res. Express, 2019, 6, p 1165b9.

    Article  Google Scholar 

  89. S. Basak, P. Biswas, S. Patra, H. Roy, and M.K. Mondal, Effect of TiB2 and Al3Ti on the Microstructure, Mechanical Properties and Fracture Behaviour of Near Eutectic Al-12.6 Si Alloy, Int. J. Miner. Metall. Mater., 2021, 28, p 1174–1185.

    Article  CAS  Google Scholar 

  90. A. Parthiban, V. Vijayan, T. Sathish, S. Dinesh Kumar, L. Ponraj Sankar, N. Parthipan, D. Tafesse, and M. Tufa, Parameters of Porosity and Compressive Strength-Based Optimization on Reinforced Aluminium From the Recycled Waste Automobile Frames, Adv. Mater. Sci. Eng., 2021. https://doi.org/10.1155/2021/3648480

    Article  Google Scholar 

  91. J. Gayathri and R. Elansezhian, Influence of Dual Reinforcement (nano CuO+ Reused Spent Alumina Catalyst) on Microstructure and Mechanical Properties of Aluminium Metal Matrix Composite, J. Alloys Compd., 2020, 829, 154538.

    Article  CAS  Google Scholar 

  92. A. Mayyas, M. Omar, M. Hayajneh, and A.R. Mayyas, Vehicle’s Lightweight Design vs. Electrification from Life Cycle Assessment Perspective, J. Clean Prod., 2017, 167, p 687–701.

    Article  Google Scholar 

  93. A. Seedam, T. Satiennam, T. Radpukdee, W. Satiennam, and V. Ratanavaraha, Motorcycle On-Road Driving Parameters Influencing Fuel Consumption and Emissions on Congested Signalized Urban Corridor, J. Adv. Transpor., 2017. https://doi.org/10.1155/2017/5859789

    Article  Google Scholar 

  94. D. Carle and G. Blount, The Suitability of Aluminium as an Alternative Material for Car Bodies, Mater. Des., 1999, 20, p 267–272.

    Article  CAS  Google Scholar 

  95. O.A. Odunlami, O.K. Oderinde, F.A. Akeredolu, J.A. Sonibare, O.R. Obanla, and M.E. Ojewumi, The Effect of Air-Fuel Ratio on Tailpipe Exhaust Emission of Motorcycles, Fuel Commun., 2022, 11, 100040.

    Article  Google Scholar 

  96. S. Dey and N.S. Mehta, Automobile Pollution Control Using Catalysis, Res. Environ. Sustain., 2020, 2, 100006.

    Google Scholar 

  97. Bajaj Auto. Available online: https://www.bajajauto.com (accessed on 15 June 2021).

  98. A.A. Ahmed, V.A. Kumar, S. Gokul, P. Vijay, and C. Parthasarathy, Design and Analysis of Disc Brake Rotor Using Different Profiles, Int. J. Eng. Appl. Sci. Technol., 2020, 4, p 286–293.

    Google Scholar 

  99. Abaqus 6.14. (2014) Dassault Systemes Simulia Corporation: USA

  100. C.A. Smith and R.M. Johnson, Stress Analysis of Disc Brake Rotors, Int. J. Mech. Eng., 2018, 7, p 1–7.

    Google Scholar 

  101. A. Munir and M. Rafique, Influence of von Mises Stress on Fatigue Life of Brake Disc Rotor, Int. J. Vehicle Struct. Syst., 2017, 9, p 441–448.

    Google Scholar 

  102. D. Lee and S. Kim, Analysis of Brake Rotor Thermal Stress Based on Heat Transfer Model Considering Heat Source From Friction, Int. J. Automotive Technol., 2016, 17, p 745–751.

    Google Scholar 

  103. V. Gurunath and M. Prabhu, Fatigue Analysis of Disc Brake Rotor Using Finite Element Analysis, Int. J. Adv. Eng. Res. Stud., 2015, 4, p 37–40.

    Google Scholar 

  104. A. Murata, K. Shimizu, and M. Yamanaka, Effect of Strain Rate on High Cycle Fatigue Behavior of High-Strength Steel, Int. J. Fatigue, 2017, 101, p 105–113.

    Google Scholar 

  105. M.S. Lim, K.S. Lim, and K.H. Lim, Effect of Rotor Deformation on Brake Judder, Int. J. Automot. Technol., 2015, 16, p 745–754.

    Google Scholar 

  106. D. Zhang, Y. Zhao, X. Zheng, and J. Cheng, Effect of Temperature on the Mechanical Properties of Brake Rotor Materials, Mater. Sci. Eng. A, 2015, 627, p 301–309.

    Google Scholar 

  107. R.P. Paul and K.C. Lewis, Brake System Temperature Effects on Brake Performance, SAE Int J. Passeng. Cars-Mech. Syst., 2013, 6, p 1191–1197.

    Google Scholar 

  108. A.K. Agarwal and S.K. Mangal, Analysis of Brake Fade Using Finite Element Method, Int. J. Vehicle Struct. Syst., 2017, 9, p 140–146.

    Google Scholar 

  109. H.D. Zhang and M.Y. Zhu, Analysis of Thermal Stress in a Ventilated Brake Rotor, Int. J. Mech. Sci., 2013, 77, p 146–153.

    Google Scholar 

  110. K. Udayakumar, S. Abdul Gafoor, and R. Arumugam, Numerical Simulation of Heat Dissipation in Automotive Disc Brake Using Conjugate Heat Transfer Analysis, Proc. Inst Mech. Eng. Part D J. Automob. Eng, 2019, 233, p 3056–3070.

    Google Scholar 

  111. R. S. Jadon, A. Gupta, (2008) Brake disc cooling: a comparative study of various designs. SAE Int. J. Passeng. Cars-Mech. Syst.

  112. J. E. Surprenant, C. R. Wagner, (1978) The effect of heat transfer on brake performance. SAE Tech. Paper Ser.

  113. A. Jahan, M. H. Aghdam, (2015) Thermal Deformation and Cooling Efficiency of Automotive Brake Discs. Int. J. Automot. Eng.

  114. A. Samareh, P. Bhattacharya, M. A. Habib, (2012) Brake cooling: influence of the cooling system design parameters on the brake performance. SAE Tech. Paper Ser.

  115. B. Dehghan-Manshadi, H. Mahmudi, A. Abedian, and R. Mahmudi, A Novel Method for Materials Selection in Mechanical Design: Combination of Non-Linear Normalization and a Modified Digital Logic Method, Mater. Des., 2007, 28, p 8–15.

    Article  Google Scholar 

Download references

Funding

The author(s) received financial support for this research work from the Science & Engineering Research Board (SERB), India, SERB Sanction Order No: EEQ/ 2018/000592.

Author information

Authors and Affiliations

Authors

Contributions

PB contributed to conceptualization, methodology, formal analysis, investigation, writing—original draft. MKM contributed to conceptualization, funding acquisition, resources, supervision, writing—review & editing.

Corresponding author

Correspondence to Manas Kumar Mondal.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

The authors declare that the research was conducted according to ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Digital Logic Method (DLM)

Appendix 1: Digital Logic Method (DLM)

Details of the calculation done to obtain the Performance Index (γ) considering the DLM are presented in this Appendix. The DLM is a material selection technique similar to the ranking method introduced by Morris (1964) (Ref 115). Every possible pair of essential material properties is appraised according to application importance by utilizing a binary score of one (1) or zero (0). When comparing a particular pair of properties, the more important property gets a positive decision of one (1), and another one gets Zero (0). The total number of positive decisions (N) has been calculated according to Eq 1.

$$N = \frac{{n\left( {n - 1} \right)}}{2}$$
(1)

where n denotes the number of effective properties to be considered for selecting material for the disk brake rotor. In the present study, the total number of necessary properties is seven (n = 7), as shown in Table 3. The total number of positive decisions in the present case is:

$$N = \frac{{7\left( {7 - 1} \right)}}{2} = 21$$

After comparing all the possible pairs and assigning the binary code one (1) or zero (0), results are presented in a matrix form as shown in Table

Table 6 Determination of relative importance of properties for disk brake rotor using digital logic method (DLM), where ‘1, 2, 3,…..21’ denote positive decision and ‘P1, P2, …P7’ denote materials properties

6. The total number of positive decisions for individual properties (Np) was counted, and a weighting factor/ relative emphasis coefficient (α) are calculated according to Eq 2.

$$\alpha = \frac{{N_{P} }}{N}$$
(2)

Relative emphasis coefficient (α) is a weighted property comparing a pair of properties of a particular material. The calculated relative emphasis coefficient (α) is shown in Table

Table 7 Relative Emphasis Coefficient (α) of considered properties for disk brake rotor materials

7. To consider the emphasis of a material, the weighted properties method was applied to calculate the scaling factor (β). There are two types of properties: for some properties, high values have a positive impact (strength), while for other properties, low values have a positive impact (density) on the disk brake rotor application. If the maximum value is desirable, then for a particular property highest value material scaling factor (β) will be 100, and if the minimum value is desirable, then the lowest value material scaling factor (β) will be 100 as shown in Table

Table 8 Calculated scaling factor (β) for the required properties of the disk brake rotor

8.

When the maximum value is desirable, then the scaling factor (β) has been calculated using Eq 3.

$$\beta = \frac{{\text{Numerical\; value\; of\; property}}}{{\text{Maximum value in the list}}} \times 100$$
(3)

When the minimum value is desirable, then the scaling factor ) is calculated using Eq 4.

$$\beta = \frac{{\text{Minimum\; value\; in\; the\; list}}}{{\text{Numerical value of property}}} \times 100$$
(4)

The performance index (γ) is the multiplication value of the scaling factor (β) and the corresponding relative emphasis coefficient (α). The performance indexes (γ) of materials are calculated according to Eq 5. The calculated performance indexes (γ) are represented in Table

Table 9 Calculated performance index (γ) of the existing and proposed materials for disk brake rotor

9. Table 9 reveals that the stainless steel and Al-Mg2Si disk have more or less the same performance index, but cast iron has a much lower performance index compared to other materials.

Materials performance index

$$\gamma = \sum\limits_{i = 1}^{n} {\beta_{i} \overline{\alpha }_{i} }$$
(5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, P., Mondal, M.K. Evaluation of a Cast Al-Mg2Si Composite for Automobile Disk-Brake Rotor Application. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08760-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08760-1

Keywords

Navigation