Skip to main content
Log in

Effects of Hole Cold Expansion on Fatigue Behaviors of AlSi10Mg Plate Manufactured by Selective Laser Melting

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The fatigue life of metal part manufactured by selective laser melting is generally poor. Cold expansion technique is an effective approach to advance the fatigue performance of hole structures. This paper proposes a mandrel cold expansion process to advance the fatigue performance of AlSi10Mg hole plates fabricated by selective laser melting. A finite element analysis was performed to investigate the hole plate cold expansion approach. The influences of cold expansion on the surface roughness, residual stresses and fatigue behaviors of the plates were discussed. The results indicate that compressive residual stresses are introduced at both the cold-expanded hole inlet and outlet. The compressive residual stresses at the outlet surface are higher than that of the inlet surface. The cold-expanded hole plate presents a large compressive residual stress region in the transverse direction, which leads to the fracture of the specimen changes from the transverse to the longitudinal direction. In addition, the cold expansion reduces the surface roughness Ra of hole wall. The fatigue performance of the additive manufactured AlSi10Mg plate is improved at low cold expansion degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B. Zhou, H. Cui, H. Liu, Y. Li, G. Liu, S. Li, and S. Zhang, Experimental Investigation and Finite Element Analysis on Fatigue Behavior of Aluminum Alloy 7050 Single-Lap Joints, J. Mater. Eng. Perform., 2018, 27(3), p 915–923.

    Article  CAS  Google Scholar 

  2. J. Liu, X.J. Shao, Y.S. Liu, and Z.F. Yue, Effect of Cold Expansion on Fatigue Performance of Open Holes, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2008, 477(1), p 271–276.

    Article  Google Scholar 

  3. L. Leng, Z.J. Zhang, Q.Q. Duan, P. Zhang, and Z.F. Zhang, Improving the Fatigue Strength of 7075 Alloy through Aging, Mater. Sci. Eng. A, 2018, 738, p 24–30.

    Article  CAS  Google Scholar 

  4. C. Wang, F. Zou, E. Zhou, Z. Fan, E. Ge, Q. An, W. Ming, and M. Chen, Effect of Split Sleeve Cold Expansion on Microstructure and Fatigue Performance of 7075–T6 Aluminum Alloy Holes, Int. J. Fatigue, 2023, 167, 107339.

    Article  CAS  Google Scholar 

  5. M. Yanishevsky, G. Li, G. Shi, and D. Backman, Fractographic Examination of Coupons Representing Aircraft Structural Joints with and without Hole Cold Expansion, Eng. Fail. Anal., 2013, 30, p 74–90.

    Article  CAS  Google Scholar 

  6. Y. Fu, E. Ge, H. Su, J. Xu, and R. Li, Cold Expansion Technology of Connection Holes in Aircraft Structures: A Review and Prospect, Chin. J. Aeronaut., 2015, 28(4), p 961–973.

    Article  Google Scholar 

  7. H. Liu, D. Hu, R. Wang, X. Wang, S. Jin, and Y. Gu, Experimental and Numerical Investigations on the Influence of Cold Expansion on Low Cycle Fatigue Life of Bolt Holes in Aeroengine Superalloy Disk at Elevated Temperature, Int. J. Fatigue, 2020, 132, 105390.

    Article  CAS  Google Scholar 

  8. Y. Wang, Y. Zhu, S. Hou, H. Sun, and Y. Zhou, Investigation on Fatigue Performance of Cold Expansion Holes of 6061–T6 Aluminum Alloy, Int. J. Fatigue, 2017, 95, p 216–228.

    Article  CAS  Google Scholar 

  9. Y. Wang, Y. Zhu, and Z. Cai, Effect of Ultrasonic Impact Treatment on the Fatigue Performance of Cold Expanded AA6061-T6 Hole, J. Mater. Eng. Perform., 2020, 29(1), p 691–698.

    Article  CAS  Google Scholar 

  10. Z. Emami Geiglou and T.N. Chakherlou, Investigating the effect of cold expansion process on the fatigue behavior of aluminum alloy 7075–T6 in double-lap shear joints, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2019, 233(8), p 1645–1660.

    CAS  Google Scholar 

  11. G. Zheng, Z. Cao, and Y. Zuo, A Dynamic Cold Expansion Method to Improve Fatigue Performance of Holed Structures Based on Electromagnetic Load, Int. J. Fatigue, 2021, 148, p 106253.

    Article  Google Scholar 

  12. H.D. Gopalakrishna, H.N. Narasimha Murthy, M. Krishna, M.S. Vinod, and A.V. Suresh, Cold Expansion of Holes and Resulting Fatigue Life Enhancement and Residual Stresses in Al 2024 T3 Alloy – An Experimental Study, Eng. Fail. Anal., 2010, 17(2), p 361–368.

    Article  CAS  Google Scholar 

  13. P. Shahriary and T.N. Chakherlou, Investigating the Effect of Cold Expansion on Frictional Force Evolution during Fretting Fatigue Tests of AL2024-T3 Plates, Int. J. Mech. Sci., 2018, 135, p 146–157.

    Article  Google Scholar 

  14. T.N. Chakherlou, M. Shakouri, A.B. Aghdam, and A. Akbari, Effect of Cold Expansion on the Fatigue Life of Al 2024–T3 in Double Shear Lap Joints: Experimental and Numerical Investigations, Mater. Des., 2012, 33, p 185–196.

    Article  CAS  Google Scholar 

  15. T.N. Chakherlou, M. Mirzajanzadeh, B. Abazadeh, and K. Saeedi, An Investigation about Interference Fit Effect on Improving Fatigue Life of a Holed Single Plate in Joints, Eur. J. Mech. - ASolids, 2010, 29(4), p 675–682.

    Article  Google Scholar 

  16. T.N. Chakherlou, P. Shahriary, and A. Akbari, Experimental and Numerical Investigation on the Fretting Fatigue Behavior of Cold Expanded Al-Alloy 2024–T3 Plates, Eng. Fail. Anal., 2021, 123, 105324.

    Article  CAS  Google Scholar 

  17. Y. Huang, H. Li, X. Yang, Z. Guan, Z. Li, and Y. Sun, Improving the Fatigue Life of 2297–T87 Aluminum-Lithium Alloy Lugs by Cold Expansion, Interference Fitting, and Their Combination, J. Mater. Process. Technol., 2017, 249, p 67–77.

    Article  CAS  Google Scholar 

  18. S.-L. Yao, X.-L. Lei, R.-Z. Wang, C.-Y. He, X.-C. Zhang, and S.-T. Tu, A Novel Cold Expansion Process for Improving the Surface Integrity and Fatigue Life of Small-Deep Holes in Inconel 718 Superalloys, Int. J. Fatigue, 2022, 154, p 106544.

    Article  CAS  Google Scholar 

  19. G.P. Pucillo, A. Carrabs, S. Cuomo, A. Elliott, and M. Meo, Cold Expansion of Rail-End-Bolt Holes: Finite Element Predictions and Experimental Validation by DIC and Strain Gauges, Int. J. Fatigue, 2021, 149, p 106275.

    Article  Google Scholar 

  20. G.P. Pucillo, A. Carrabs, S. Cuomo, A. Elliott, and M. Meo, On the Fatigue Improvement of Railways Superstructure Components Due to Cold Expansion – Part I: Experimental Analysis, Procedia Struct. Integr., 2020, 28, p 1998–2012.

    Article  Google Scholar 

  21. G.P. Pucillo, A. Carrabs, S. Cuomo, A. Elliott, and M. Meo, On the Fatigue Improvement of Railways Superstructure Components Due to Cold Expansion – Part II: Finite Element Prediction, Procedia Struct. Integr., 2020, 28, p 2013–2025.

    Article  Google Scholar 

  22. G.P. Pucillo, The Effects of the Cold Expansion Degree on the Fatigue Crack Growth Rate in Rail Steel, Int. J. Fatigue, 2022, 164, 107130.

    Article  CAS  Google Scholar 

  23. H. Shuai, Z. Youli, C. Zhihai, W. Yanli, N. Yongheng, and D. Xiaokun, Effect of Hole Cold Expansion on Fatigue Performance of Corroded 7B04-T6 Aluminium Alloy, Int. J. Fatigue, 2019, 126, p 210–220.

    Article  CAS  Google Scholar 

  24. H. Taghizadeh, T.N. Chakherlou, H. Ghorbani, and A. Mohammadpour, Prediction of Fatigue Life in Cold Expanded Fastener Holes Subjected to Bolt Tightening in Al Alloy 7075–T6 Plate, Int. J. Mech. Sci., 2015, 90, p 6–15.

    Article  Google Scholar 

  25. W.Z. Yan, X.S. Wang, H.S. Gao, and Z.F. Yue, Effect of Split Sleeve Cold Expansion on Cracking Behaviors of Titanium Alloy TC4 Holes, Eng. Fract. Mech., 2012, 88, p 79–89.

    Article  Google Scholar 

  26. R. Ghfiri, A. Amrouche, A. Imad, and G. Mesmacque, Fatigue Life Estimation after Crack Repair in 6005 A-T6 Aluminium Alloy Using the Cold Expansion Hole Technique, Fatigue Htmlent Glyphamp Asciiamp Fract Eng. Mater. Struct., 2000, 23(11), p 911–916.

    Article  CAS  Google Scholar 

  27. M.S. Rana, C. Makabe, and G. Fujiwara, The Effect of Hole Shape on the Extent of Fatigue Life Improvement by Cold Expansions, Eng. Fail. Anal., 2009, 16(7), p 2081–2090.

    Article  CAS  Google Scholar 

  28. X. Wang, C. Xu, X. Chen, D. Hu, B. Hu, R. Hu, Y. Gu, and Z. Tang, Effect of Cold Expansion on High-Temperature Low-Cycle Fatigue Performance of the Nickel-Based Superalloy Hole Structure, Int. J. Fatigue, 2021, 151, p 106377.

    Article  CAS  Google Scholar 

  29. X. Xing, X. Duan, X. Sun, H. Gong, L. Wang, and F. Jiang, Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique, Materials, 2019, 12(3), p 455.

    Article  CAS  Google Scholar 

  30. M. Aktürk, M. Boy, M.K. Gupta, S. Waqar, G.M. Krolczyk, and M.E. Korkmaz, Numerical and Experimental Investigations of Built Orientation Dependent Johnson-Cook Model for Selective Laser Melting Manufactured AlSi10Mg, J. Mater. Res. Technol., 2021, 15, p 6244–6259.

    Article  Google Scholar 

  31. H. Taghizadeh, T.N. Chakherlou, and A.B. Aghdam, Prediction of Fatigue Life in Cold Expanded Al-Alloy 2024–T3 Plates Used in Double Shear Lap Joints, J. Mech. Sci. Technol., 2013, 27(5), p 1415–1425.

    Article  Google Scholar 

  32. L.P. Borrego, J.M. Costa, S. Silva, and J.M. Ferreira, Microstructure Dependent Fatigue Crack Growth in Aged Hardened Aluminium Alloys, Int. J. Fatigue, 2004, 26(12), p 1321–1331.

    Article  CAS  Google Scholar 

  33. T.N. Chakherlou, H. Taghizadeh, and A.B. Aghdam, Experimental and Numerical Comparison of Cold Expansion and Interference Fit Methods in Improving Fatigue Life of Holed Plate in Double Shear Lap Joints, Aerosp. Sci. Technol., 2013, 29(1), p 351–362.

    Article  Google Scholar 

  34. J. Liu, H. Wu, J. Yang, and Z. Yue, Effect of Edge Distance Ratio on Residual Stresses Induced by Cold Expansion and Fatigue Life of TC4 Plates, Eng. Fract. Mech., 2013, 109, p 130–137.

    Article  Google Scholar 

  35. H. Soyama, C.R. Chighizola, and M.R. Hill, Effect of Compressive Residual Stress Introduced by Cavitation Peening and Shot Peening on the Improvement of Fatigue Strength of Stainless Steel, J. Mater. Process. Technol., 2021, 288, p 116877.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52205323, 52105424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Zhang, B., Wang, M. et al. Effects of Hole Cold Expansion on Fatigue Behaviors of AlSi10Mg Plate Manufactured by Selective Laser Melting. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08701-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08701-y

Keywords

Navigation