Skip to main content
Log in

Surface Alloying Characteristics of Inconel 625 Coatings Deposited on Ductile Cast Iron by Plasma Wire-Arc Welding

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Inconel 625 superalloy was deposited on the cast iron surface by plasma wire-arc welding (PWAW). The effects of the dilution rate on microstructure and interface behavior of Inconel 625 deposited coatings were investigated. The results show that the dilution rate of the deposited coatings increases from 18.55 to 67.85% with the increase of heat inputs. Good metallurgical bonding and spreading of the deposited coating interfaces could be achieved at different dilution rates. At dilution rates below 20%, the microstructure of the deposited coatings is typical of γ-Ni dendrites with (Nb, Mo)-rich carbides at grain boundaries. However, the deposited coatings are γ-(Fe, Ni) dendrites at a dilution rate exceeding 40%, and the interdendritic phase is composed of FeNiCr eutectic structure and a small amount of carbide. A partially melted zone (PMZ) mainly consists of ledeburite, martensite and unfused graphite. The microhardness of the deposited coatings increases with increasing dilution rate. The shear strength of the deposited coatings at high dilution rates is significantly larger than that at low dilution rates, and the fracture shows a brittle–ductile mixed form of rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. N. Zhang, J.W. Zhang, L.T. Lu, M.T. Zhang, D.F. Zeng, and Q.P. Song, Wear and Friction Behavior of Austempered Ductile Iron as Railway Wheel Material, Mater. Des., 2016, 89, p 815–822.

    Article  CAS  Google Scholar 

  2. M. Shirani and G. Härkegård, Large Scale Axial Fatigue Testing of Ductile Cast Iron for Heavy Section Wind Turbine Components, Eng. Fail. Anal., 2011, 18, p 1496–1510.

    Article  CAS  Google Scholar 

  3. G. Cueva, A. Sinatora, W.L. Guesser, and A.P. Tschiptschin, Wear Resistance of Cast Irons Used in Brake Disc Rotors, Wear, 2003, 255, p 1256–1260.

    Article  CAS  Google Scholar 

  4. D.Q. Sun, X.Y. Gu, W.H. Liu, and Z.Z. Xuan, Welding Consumable Research for Austempered Ductile Iron (ADI), Mater. Sci. Eng. A, 2005, 402, p 9–15.

    Article  Google Scholar 

  5. O. Erić, D. Rajnović, S. Zec, L. Sidjanin, and M.T. Jovanović, Microstructure and Fracture of Alloyed Austempered Ductile Iron, Mater. Charact., 2006, 57, p 211–217.

    Article  Google Scholar 

  6. A. Sadeghi, A. Moloodi, M. Golestanipour, and M.M. Shahri, An Investigation of Abrasive Wear and Corrosion Behavior of Surface Repair of Gray Cast Iron by SMAW, J. Mater. Res. Technol., 2017, 6, p 90–95.

    Article  CAS  Google Scholar 

  7. M.H. Sohi, M. Ebrahimi, H.M. Ghasemi, and A. Shahripour, Microstructural Study of Surface Melted and Chromium Surface Alloyed Ductile Iron, Appl. Surf. Sci., 2012, 258, p 7348–7353.

    Article  CAS  Google Scholar 

  8. M. Pascual, J. Cembrero, F. Salas, and M.P. Martínez, Analysis of the Weldability of Ductile Iron, Mater. Lett., 2008, 62, p 1359–1362.

    Article  CAS  Google Scholar 

  9. F.M. Ghaini, M. Ebrahimnia, and S. Gholizade, Characteristics of Cracks in Heat Affected Zone of Ductile Cast Iron in Powder Welding Process, Eng. Fail. Anal., 2011, 18, p 47–51.

    Article  Google Scholar 

  10. G.F. Sun, R. Zhou, P. Li, A.X. Feng, and Y.K. Zhang, Laser Surface Alloying of C-B-W-Cr Powders on Nodular Cast Iron Rolls, Surf. Coat. Technol., 2011, 205, p 2747–2754.

    Article  CAS  Google Scholar 

  11. Z.B. Cai, Y.D. Wang, X.F. Cui, G. Jin, Y. Li, Z. Liu, and M.L. Dong, Design and Microstructure Characterization of FeCoNiAlCu High-Entropy Alloy Coating by Plasma Cladding: In Comparison with Thermodynamic Calculation, Surf. Coat. Technol., 2017, 330, p 163–169.

    Article  CAS  Google Scholar 

  12. R.P. Garcia, S.C. Canobre, and H.L. Costa, Microabrasion-Corrosion Resistance of Ni-Cr Superalloys Deposited by Plasma Transferred Arc (PTA) Welding, Tribol. Int., 2020, 143, p 106080.

    Article  CAS  Google Scholar 

  13. L.M. Zhang, D.H. Sun, H.Y. Yu, and H.Q. Li, Characteristics of Fe-Based Alloy Coating Produced by Plasma Cladding Process, Mater. Sci. Eng. A, 2007, 457, p 319–324.

    Article  Google Scholar 

  14. Y.X. Zhou, J. Zhang, Z.G. Xing, H.D. Wang, and Z.L. Lv, Microstructure and Properties of NiCrBSi Coating by Plasma Cladding on Gray Cast Iron, Surf. Coat. Technol., 2018, 361, p 270–279.

    Article  Google Scholar 

  15. K.Y. Shi, S.B. Hu, and H.F. Zheng, Microstructure and Fatigue Properties of Plasma Transferred Arc Alloying TiC-W-Cr on Gray Cast Iron, Surf. Coat. Technol., 2011, 206, p 1211–1217.

    Article  CAS  Google Scholar 

  16. V. Ocelík, U.D. Oliveira, M.D. Boer, and J.T.M.D. Hosson, Thick Co-Based Coating on Cast Iron by Side Laser Cladding: Analysis of Processing Conditions and Coating Properties, Surf. Coat. Technol., 2007, 201, p 5875–5883.

    Article  Google Scholar 

  17. S.S. Sandhu and A.S. Shahi, Metallurgical, Wear and Fatigue Performance of Inconel 625 Weld Claddings, J. Mater. Process. Technol., 2016, 233, p 1–8.

    Article  CAS  Google Scholar 

  18. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Laser Aided Direct Metal Deposition of Inconel 625 Superalloy: Microstructural Evolution and Thermal Stability, Mater. Sci. Eng. A, 2009, 509, p 98–104.

    Article  Google Scholar 

  19. E. Mohammadi Zahrani and A.M. Alfantazi, High Temperature Corrosion and Electrochemical Behavior of INCONEL 625 Weld Overlay in PbSO4-Pb3O4-PbCl2-CdO-ZnO Molten Salt Medium, Corros. Sci., 2014, 85, p 60–76.

    Article  CAS  Google Scholar 

  20. X. Xu, G.Y. Mi, L. Chen, L.D. Xiong, P. Jiang, X.Y. Shao, and C.M. Wang, Research on Microstructures and Properties of Inconel 625 Coatings Obtained by Laser Cladding with Wire, J. Alloys Compd., 2017, 715, p 362–373.

    Article  CAS  Google Scholar 

  21. Q.S. Ma, H.Z. Chen, N.N. Ren, Y.Y. Zhang, L. Hu, W. Meng, and X.H. Yin, Effects of Ultrasonic Vibration on Microstructure, Mechanical Properties, and Fracture Mode of Inconel 625 Parts Fabricated by Cold Metal Transfer Arc Additive Manufacturing, J. Mater. Eng. Perform., 2021, 30, p 6808–6820.

    Article  CAS  Google Scholar 

  22. X.H. Yin, G.Q. He, W. Meng, Z.L. Xu, L. Hu, and Q.S. Ma, Comparison Study of Low-Heat-Input Wire Arc-Fabricated Nickel-Based Alloy by Cold Metal Transfer and Plasma Arc, J. Mater. Eng. Perform., 2020, 29, p 4222–4232.

    Article  CAS  Google Scholar 

  23. B. Chen, Y. Su, Z.H. Xie, C.W. Tan, and J.C. Feng, Development and Characterization of 316L/Inconel625 Functionally Graded Material Fabricated by Laser Direct Metal Deposition, Opt. Laser Technol., 2020, 123, p 10591.

    Article  Google Scholar 

  24. F.E. Mariani, K.S.B. Ribeiro, A.N. Lombardi, L.C. Casteletti, and R.T. Coelho, Effect of Laser Polishing Post-processing Technique on the Roughness and Wear Resistance of Inconel 625 Deposited by Laser Cladding on AISI 304L Stainless Steel, J. Mater. Eng. Perform., 2021, 30, p 6713–6721.

    Article  CAS  Google Scholar 

  25. T.E. Abioye, J. Folkes, and A.T. Clare, A Parametric Study of Inconel 625 Wire Laser Deposition, J. Mater. Process. Technol., 2013, 213, p 2145–2151.

    Article  CAS  Google Scholar 

  26. F. Fernandes, B. Lopes, A. Cavaleiro, A. Ramalho, and A. Loureiro, Effect of Arc Current on Microstructure and Wear Characteristics of a Ni-Based Coating Deposited by PTA on Gray Cast Iron, Surf. Coat. Technol., 2011, 205, p 4094–4106.

    Article  CAS  Google Scholar 

  27. J.K. Huang, S.E. Liu, S.R. Yu, L. An, X.Q. Yu, D. Fan, and F.Q. Yang, Cladding Inconel 625 on Cast Iron via Bypass Coupling Micro-plasma Arc Welding, J. Manuf. Process., 2020, 56, p 106–115.

    Article  Google Scholar 

  28. J. Liu, H. Liu, X.H. Tian, H.F. Yang, and J.B. Hao, Microstructural Evolution and Corrosion Properties of Ni-Based Alloy Coatings Fabricated by Multi-layer Laser Cladding on Cast Iron, J. Alloys Compd., 2020, 822, p 153708.

    Article  CAS  Google Scholar 

  29. H.Q. Hu, Metal Solidification Principle, 2nd ed. Machinery Industry Press, Beijing, 2007.

    Google Scholar 

  30. J.B. Lu, B.F. Wang, X.K. Qiu, Z.Q. Peng, and M.X. Ma, Microstructure Evolution and Properties of CrCuFexNiTi High-Entropy Alloy Coating by Plasma Cladding on Q235, Surf. Coat. Technol., 2017, 328, p 313–318.

    Article  CAS  Google Scholar 

  31. H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, and G.P. Zhang, Effect of Scanning Strategy on Grain Structure and Crystallographic Texture of Inconel 718 Processed by Selective Laser Melting, J. Mater. Sci. Technol., 2018, 34, p 89–94.

    Article  Google Scholar 

  32. Y. Chen, K. Zhang, J. Huang, S.R.E. Hosseini, and Z.G. Li, Characterization of Heat Affected Zone Liquation Cracking in Laser Additive Manufacturing of Inconel 718, Mater. Des., 2015, 90, p 586–594.

    Article  Google Scholar 

  33. Y.J. Li, S.Y. Dong, S.X. Yan, X.T. Liu, P. He, and B.S. Xu, Microstructure Evolution During Laser Cladding Fe-Cr Alloy Coatings on Ductile Cast Iron, Opt. Laser Technol., 2018, 108, p 255–264.

    Article  CAS  Google Scholar 

  34. M. Shamanian, S.M.R. Mousavi Abarghouie, and S.R. Mousavi Pour, Effects of Surface Alloying on Microstructure and Wear Behavior of Ductile Iron, Mater. Des., 2010, 31, p 2760–2766.

    Article  CAS  Google Scholar 

  35. Y.C. Bai, C.L. Zhao, Y. Zhang, and H. Wang, Microstructure and Mechanical Properties of Additively Manufactured Multi-material Component with Maraging Steel on CrMn Steel, Mater. Sci. Eng. A, 2021, 802, p 140630.

    Article  CAS  Google Scholar 

  36. R.A. Jeshvaghani, E. Harati, and M. Shamanian, Effects of Surface Alloying on Microstructure and Wear Behavior of Ductile Iron Surface-Modified with a Nickel-Based Alloy Using Shielded Metal Arc Welding, Mater. Des., 2011, 32, p 1531–1536.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China No. 52005007 and No. 52105312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Meng, W., Ma, Q. et al. Surface Alloying Characteristics of Inconel 625 Coatings Deposited on Ductile Cast Iron by Plasma Wire-Arc Welding. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08638-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08638-2

Keywords

Navigation