Skip to main content
Log in

Multi-Phase-Field Simulation of the Dynamic Dragging of Dislocation on the Solute Atoms and Point Defects

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Point defects and dislocation can be induced in dual-phase stainless steels in the circumstance of irradiation. These defects affect the phase separation and the morphology evolution of Fe-Cr based alloys, increasing the hardening and damage of alloys. The influence of dislocation on the evolution of Cr-enriched α′ nanophase accompanying the vacancy and interstitial atoms is studied by the multi-phase-field model. Multi-dislocation loops are introduced to investigate the dragging effect of dislocation stress field on the solute atoms, and the dragging effect of solute atoms on the point defects. Tensile stress of dislocation drags the Cr atoms to accelerate the local phase separation, and the migration of Cr atoms drags the vacancies to form a two-dimensional vacancy loop around the α/α′ phase boundary. Large diffusion potential difference drives the atomic diffusion rapidly and accelerates the growth and coarsening of the α′ phase. The superposition of tensile and compressive stress field of multi-dislocation loops makes the redissolution of the α′ phase. The multi-interactions of stressatomspoint defects are clearly presented in this work, and the dynamic effects are clarified for the dragging on solute atoms and point defects under dislocation stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.G. Shewmon, Radiation-Induced Swelling of Stainless Steel: Breeder Reactor Performance will be Affected by Swelling of Structural Material, Science, 1971, 173, p 987–991.

    Article  CAS  Google Scholar 

  2. S.J. Wu, C. Cao, H.F. Bo, and Q.J. Zhang, In-Situ Atomic-Scale Observation the Escape of Irradiation-Induced Dislocation Loops in Magnesium, J. Alloys Compd., 2022, 895, 162708.

    Article  CAS  Google Scholar 

  3. V.L. Manugula, K.V. Rajulapati, and G.M. Reddy, A Critical Assessment of the Microstructure and Mechanical Properties of Friction Stir Welded Reduced Activation Ferritic-Martensitic Steel, Mater. Des., 2016, 92, p 200–212.

    Article  CAS  Google Scholar 

  4. G.R. Odette and S.J. Zinkle, Structural alloys for nuclear energy applications, Austenitic stainless steels. Elsevier, New York, 2019, p 293–347

    Google Scholar 

  5. Y. Nishiyama, K. Onizawa, M. Suzuki, J.W. Anderegg, Y. Nagai, T. Toyama, M. Hasegawa, and J. Kameda, Effects of Neutron-Irradiation-Induced Intergranular Phosphorus Segregation and Hardening on Embrittlement in Reactor Pressure Vessel Steels, Acta Mater., 2008, 56, p 4510–4521.

    Article  CAS  Google Scholar 

  6. P. Marshal, Austenitic stainless steels microstructure and properties, Elsevier Applied Science Publisher, London, 1984.

    Google Scholar 

  7. R.L. Klueh and A.T. Nelson, Ferritic/Martensitic Steels for Next-Generation Reactors, J. Nucl. Mater., 2007, 371, p 37–52.

    Article  CAS  Google Scholar 

  8. L. Malerba, G. Bonny, D. Terentyev, E.E. Zhurkin, M. Hou, K. Vörtler, and K. Nordlund, Microchemical Effects in Irradiated Fe–Cr Alloys as Revealed by Atomistic Simulation, J. Nucl. Mater., 2013, 442, p 486–498.

    Article  CAS  Google Scholar 

  9. V. Kuksenko, C. Pareige, and P. Pareige, Cr Precipitation in Neutron Irradiated Industrial Purity Fe–Cr Model Alloys, J. Nucl. Mater., 2013, 432, p 160–165.

    Article  CAS  Google Scholar 

  10. M.I. Pascuet, G. Bonny, G. Monnet, and L. Malerba, The Effect on the Mechanical Response of Cr and Ni Segregation on Dislocation Lines in BCC Fe, J. Nucl. Mater., 2020, 539, 152319.

    Article  CAS  Google Scholar 

  11. D. Terentyev, G. Bonny, and L. Malerba, Mobility of Dislocations in Thermal Aged and Irradiated Fe–Cr Alloys, J. Nucl. Mater., 2009, 386, p 257–260.

    Article  Google Scholar 

  12. E.E. Zhurkin, D. Terentyev, M. Hou, L. Malerba, and G. Bonny, Metropolis Monte-Carlo Simulation of Segregation in Fe–Cr Alloys, J. Nucl. Mater., 2011, 417, p 1082–1085.

    Article  CAS  Google Scholar 

  13. D. Terentyev, F. Bergner, and Y. Osetsky, Cr Segregation on Dislocation Loops Enhances Hardening in Ferritic Fe–Cr Alloys, Acta Mater., 2013, 61, p 1444–1453.

    Article  CAS  Google Scholar 

  14. Y.S. Li, S.X. Li, and T.X. Zhang, Effect of Dislocations on Spinodal Decomposition in Fe–Cr alloys, J. Nucl. Mater., 2009, 395, p 120–130.

    Article  CAS  Google Scholar 

  15. Y. Ni and L.H. He, Spontaneous Ordering of Composition Pattern in an Epitaxial Monolayer by Subsurfacial Dislocation Array, Thin Solid Films, 2003, 440, p 285–292.

    Article  CAS  Google Scholar 

  16. S.Y. Hu and L.Q. Chen, Spinodal Decomposition in a Film with Periodically Distributed Interfacial Dislocations, Acta Mater., 2004, 52, p 3069–3074.

    Article  CAS  Google Scholar 

  17. Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu, and J.H. Chen, Structures and Formation Mechanisms of Dislocation-Induced Precipitates in Relation to the Age-Hardening Responses of Al–Mg–Si Alloys, J. Mater. Sci. Technol., 2020, 41, p 127–138.

    Article  CAS  Google Scholar 

  18. G. Stechauner and E. Kozeschnik, Self-Diffusion in Grain Boundaries and Dislocation Pipes in Al, Fe, and Ni and Application to AlN Precipitation in Steel, J. Mater. Eng. Perform., 2014, 23, p 1576–1579.

    Article  CAS  Google Scholar 

  19. M. Yang, Z.D. Chang, J. Chen, and D.Y. An, Mechanism of Dislocation Promoting Al13Fe4 Precipitation During Friction Stir-Assisted Incremental Sheet Forming in AA5052 Sheet, Mater. Lett., 2022, 315, 131976.

    Article  CAS  Google Scholar 

  20. F. Léonard and R.C. Desai, Spinodal Decomposition and Dislocation Lines in Thin Films and Bulk Materials, Phys. Rev. B, 1998, 58, p 8277–8288.

    Article  Google Scholar 

  21. S.Y. Hu and L.Q. Chen, Solute Segregation and Coherent Nucleation and Growth Near a Dislocation–A Phase-Field Model Integrating Defect and Phase Microstructures, Acta Mater., 2001, 49, p 463–472.

    Article  CAS  Google Scholar 

  22. S.I. Porollo, A.M. Dvoriashin, A.N. Vorobyev, and Y.V. Konobeev, The Microstructure and Tensile Properties of Fe–Cr Alloys After Neutron Irradiation at 400 °C to 5.5±7.1 dpa, J. Nucl. Mater., 1998, 256, p 247–253.

    Article  CAS  Google Scholar 

  23. M.L. Jenkins, Z. Yao, M.H. Mayoral, and M.A. Kirk, Dynamic Observations of Heavy-Ion Damage in Fe and Fe–Cr Alloys, J. Nucl. Mater., 2009, 389, p 197–202.

    Article  CAS  Google Scholar 

  24. R. Schäublin, B. Décamps, A. Prokhodtseva, and J.F. Löffler, On the Origin of the Primary 1/2 a0 <111>and a0 <100> Loops in Irradiated Fe (Cr) Alloys, Acta Mater., 2017, 133, p 427–439.

    Article  Google Scholar 

  25. Z.W. Yan, S.J. Shi, Y.S. Li, J. Chen, and S. Maqbool, Vacancy and Interstitial Atom Evolution with the Separation of the Nanoscale Phase in Fe–Cr Alloys: Phase-Field Simulations, Phys. Chem. Chem. Phys., 2020, 22, p 3611–3619.

    Article  CAS  Google Scholar 

  26. F. Soisson and T. Jourdan, Radiation-Accelerated Precipitation in Fe–Cr Alloys, Acta Mater., 2016, 103, p 870–881.

    Article  CAS  Google Scholar 

  27. S.J. Zinkle, Radiation-induced effects on microstructure, Comprehensive nuclear materials. R.J.M. Konings Ed., Elsevier, Amsterdam, 2012, p 65–98

    Chapter  Google Scholar 

  28. J.M. Wang, B. Liu, J.Y. Wang, and Y.C. Zhou, Theoretical Investigation of Thermodynamic Stability and Mobility of the Intrinsic Point Defects in Ti3AC2 (A = Si, Al), Phys. Chem. Chem. Phys., 2015, 17, p 8927–8934.

    Article  CAS  Google Scholar 

  29. A.B. Sivak, V.M. Chernov, N.A. Dubasova, and V.A. Romanov, Anisotropy Migration of Self-Point Defects in Dislocation Stress Fields in BCC Fe and FCC Cu, J. Nucl. Mater., 2007, 367–370, p 316–321.

    Article  Google Scholar 

  30. A.B. Sivak, V.A. Romanov, and V.M. Chernov, Influence of Stress Fields of Dislocations on Formation and Spatial Stability of Point Defects (Elastic Dipoles) in V and Fe Crystals, J. Nucl. Mater., 2003, 323, p 380–387.

    Article  CAS  Google Scholar 

  31. Y. Liu, R. Li, and Q. Peng, The Preexisting Edge Dislocations as Recombination Center of Point Defects Enhancing Irradiation Tolerance in CoCrCuFeNi High Entropy Alloy, Materialia, 2022, 21, 101307.

    Article  CAS  Google Scholar 

  32. J.L. Du, H.Q. Chen, C. Xu, Y. Fan, Y.H. Qiu, H. Wang, and E.G. Fu, Stress of Misfit Dislocation at Fe/MgO Interface Drives the Annihilation of Radiation Induced Defects, Acta Mater., 2021, 210, 116798.

    Article  CAS  Google Scholar 

  33. E.N. Epperly and R.B. Sills, Transient Solute Drag and Strain Aging of Dislocations, Acta Mater., 2020, 193, p 182–190.

    Article  CAS  Google Scholar 

  34. V.V. Malashenko, Dynamic Drag of Edge Dislocation by Circular Prismatic Loops and Point Defects, Phys. B, 2009, 404, p 3890–3893.

    Article  CAS  Google Scholar 

  35. S.Y. Hu, Dynamic Drag of Solute Atmosphere on Moving Edge Dislocations–Phase-Field Simulation, J. Appl. Phys., 2004, 96, p 229–236.

    Article  CAS  Google Scholar 

  36. L.Y. Liang, Z.G. Mei, Y.S. Kim, M. Anitescu, and A.M. Yacout, Three-Dimensional Phase-Field Simulations of Intragranular Gas Bubble Evolution in Irradiated U-Mo Fuel, Comput. Mater. Sci., 2018, 145, p 86–95.

    Article  CAS  Google Scholar 

  37. Y.S. Li, Y.Z. Yu, X.L. Cheng, and G. Chen, Phase Field Simulation of Precipitates Morphology with Dislocations under Applied Stress, Mat. Sci. Eng. A, 2011, 528, p 8628–8634.

    Article  CAS  Google Scholar 

  38. Y.L. Li, S.Y. Hu, X. Sun, M. Stan, and A. Review, Applications of the Phase Field Method in Predicting Microstructure and Property Evolution of Irradiated Nuclear Materials, npj Comput. Mater., 2017, 3, p 1–16.

    Article  Google Scholar 

  39. Y.S. Li, Z.L. Yan, and X.R. Zhou, Kinetics of Initial Phase Separation and Coarsening of Nanoscale Phase in Fe-Cr Alloys, J. Nucl. Mater., 2017, 497, p 154–160.

    Article  CAS  Google Scholar 

  40. Z.L. Yan, Y.S. Li, X.R. Zhou, Y.D. Zhang, and R. Hu, Evolution of Nanoscale Cr-rich Phase in a Fe-35 at.% Cr Alloy During Isothermal Aging, J. Alloys Compd., 2017, 725, p 1035–1043.

    Article  CAS  Google Scholar 

  41. W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, Phase Equilibria and Thermodynamic Properties in the Fe–Cr System, Crit. Rev. Solid. State. Mater. Sci., 2010, 35, p 125–152.

    Article  CAS  Google Scholar 

  42. S. Chen, Y.S. Li, S.J. Shi, and S.S. Jin, Quantitative Phase-Field Simulation of Composition Partition and Separation Kinetics of Nanoscale Phase in Fe–Cr–Al Alloy, J. Nanomater., 2019, 7–8, p 1–11.

    Google Scholar 

  43. Z.H. Cheng, Y.S. Li, S.Y. Pan, Z.W. Yan, X.Y. Zhang, and H.Y. Wang, Phase-Field Simulation of Element Distribution and Kinetics Evolution of Cr/Cu Core-Shell Nanoparticles in Fe–Cr–Al–Cu Alloy, Appl. Phys. A, 2022, 128, p 42–54.

    Article  CAS  Google Scholar 

  44. G.S. Was, Fundamentals of radiation materials science, Springer, Berlin, Heidelberg, 2007.

    Google Scholar 

  45. J. Hesterberg, R. Smith, and G.S. Was, Atomistic Simulation of the Obstacle Strengths of Radiation-Induced Defects in an Fe–Ni–Cr Austenitic Stainless Steel, Modell. Simul. Mater. Sci. Eng., 2019, 27, 085004.

    Article  CAS  Google Scholar 

  46. X.W. Tong, Y.S. Li, Z.W. Yan, and D. Wang, Phase-Field Simulation of Effects of Normal Strain on the Morphology and Kinetics Evolution of Nanoscale Phase, J. Mater. Res. Technol., 2020, 9, p 2063–2071.

    Article  Google Scholar 

  47. T.Y. Zhang, Anisotropic Elasticity Study of The Critical Thickness of an Epilayer on a Substrate with Different Elastic Constants, J. Appl. Phys., 1995, 78, p 4948–4957.

    Article  CAS  Google Scholar 

  48. K.C. Wu and Y.T. Chid, The Elastic Fields of a Dislocation in an Anisotropic Strip, Int. J. Solids Struct., 1995, 32, p 543–552.

    Article  Google Scholar 

  49. T.Y. Zhang, Isotropic and Anisotropic Elasticity Studies of Mismatch Dislocations, Critical Thickness and Work Hardening in Epilayers, Defect Diffus. Forum, 1996, 61, p 136–137.

    Google Scholar 

  50. A.G. Khachaturyan, Theory of structural transformations in solids, Wiley, New Yourk, 1983.

    Google Scholar 

  51. D.E. Smirnova, A.Y. Kuksin, and S.V. Starikov, Investigation of Point Defects Diffusion in BCC Uranium and U-Mo Alloys, J. Nucl. Mater., 2015, 45, p 304–311.

    Article  Google Scholar 

  52. Y.Y. Wang, J.H. Ding, Y.G. Chen, J.J. Zhao, and Y.Z. Wang, Three-Dimensional Phase Field Simulation of Intragranular Void Formation and Thermal Conductivity in Irradiated α-Fe, J. Mater. Sci., 2018, 53, p 11002–11014.

    Article  CAS  Google Scholar 

  53. E.A. Brandes and G.B. Brook, Smithells metals reference book, Elsevier, New York, 2004.

    Google Scholar 

  54. J.J. Wang, T.N. Yang, J.A. Zorn, E. Wang, J. Irwin, S. Lindemann, M.S. Rzchowski, J.M. Hu, C.B. Eom, and L.Q. Chen, Strain Anisotropy and Magnetic Domain Structures in Multiferroic Heterostructures: High-Throughput Finite-Element and Phase-Field Studies, Acta Mater., 2019, 176, p 73–83.

    Article  CAS  Google Scholar 

  55. R. Zhao, J. Zhu, Y. Liu, and Z.H. Lai, The Phase Field Investigation of B2 (FeAl) Phase Antisite Defect During Homogenous Transformation of Fe–24Al Alloy, J. Mater. Sci., 2012, 47, p 3376–3382.

    Article  CAS  Google Scholar 

  56. Y.B. Jiang, W.B. Liu, W.J. Li, Z.Y. Sun, Y. Xin, P.H. Chen, and D. Yun, Phase-Field Simulation of the Interaction Between Intergranular Voids and Grain Boundaries During Radiation in UO2, Comput. Mater. Sci., 2021, 188, 110176.

    Article  CAS  Google Scholar 

  57. P.C. Millett, A.E. Azab, S. Rokkam, M. Tonks, and D. Wolf, Phase-Field Simulation of Irradiated Metals Part I: Void Kinetics, Comput. Mater. Sci., 2011, 50, p 949–959.

    Article  CAS  Google Scholar 

  58. R.R. Mohanty, J.E. Guyer, and Y. Sohn, Diffusion Under Temperature Gradient: A Phase-Field Model Study, J. Appl. Phys., 2009, 106, 034912.

    Article  Google Scholar 

  59. T. Okita, N. Sekimura, and F.A. Garner, Effects of DPA Rate on Swelling in Neutron-Irradiated Fe–Cr and Fe–Cr–Mo Alloys, J. Nucl. Mater., 2011, 417, p 944–948.

    Article  CAS  Google Scholar 

  60. Y.P. Gao, Y.F. Zhang, D. Schwen, C. Jiang, C. Sun, and J. Gan, Formation and Self-Organization of Void Superlattices Under Irradiation: A Phase Field Study, Materialia, 2018, 1, p 78–88.

    Article  CAS  Google Scholar 

  61. F.A. Nichols, On the Estimation of Sink-Absorption Terms in Reaction-Rate-Theory Analysis of Radiation Damage, J. Nucl. Mater., 1978, 75, p 32–41.

    Article  CAS  Google Scholar 

  62. J. Rest, Kinetics of Fission-Gas-Bubble-Nucleated Void Swelling of the Alph-Uranium Phase of Irradiated U-Zr and U–Pu–Zr Fuel, J. Nucl. Mater., 1993, 207, p 192–204.

    Article  CAS  Google Scholar 

  63. J.W. Cahn, Phase Separation by Spinodal Decomposition in Isotropic System, J. Chem. Phys., 1965, 42, p 93–99.

    Article  CAS  Google Scholar 

  64. X.W. Tong, Y.S. Li, Z.W. Yan, D. Wang, and S.J. Shi, Phase-Field Simulation of Multilayer Microstructure of Cr-Enriched Phase Induced by Alternating Strain, Int. J. Mech. Mater. Des., 2021, 18, p 185–197.

    Article  Google Scholar 

  65. J.O. Andersson and B. Sundman, Thermodynamic Properties of the Cr–Fe System, Calphad, 1987, 11, p 83–92.

    Article  CAS  Google Scholar 

  66. X.G. Zhang, K. Sun, M. Zhang, and L. Fang, First-Principles Study of the Formation and Interaction of Point Defects in Fe-Ni-Cr Alloys, J. At. Mol. Phys., 2020, 37, p 783–790.

    CAS  Google Scholar 

  67. J.B. Piochaud, T.P.C. Klaver, G. Adjanor, P. Olsson, C. Domain, and C.S. Becquart, First-Principles Study of Point Defects in an FCC Fe-10Ni-20Cr Model Alloy, Phys. Rev. B, 2014, 89, 024101.

    Article  Google Scholar 

  68. Y.Y. Wang, J.H. Ding, S.S. Huang, J.J. Zhao, and Y.Z. Wang, Mesoscale Modeling of Irradiation Damage Evolution in BCC Iron and Vanadium: A Comparative Study, Fusion. Eng. Des., 2018, 137, p 303–311.

    Article  CAS  Google Scholar 

  69. K. Toshiyuki, Phase-Field Modeling of Microstructure evolutions in Magnetic Materials, Sci. Technol. Adv. Mater., 2008, 9, 013006.

    Article  Google Scholar 

  70. T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317–425.

    Article  CAS  Google Scholar 

  71. S.Y. Hu, Y.L. Li, Y.X. Zheng, and L.Q. Chen, Effect of Solutes on Dislocation Motion–A Phase-Field Simulation, Int. J. Plast., 2004, 20, p 403–425.

    Article  Google Scholar 

  72. V. Kuksenko, C. Pareige, C. Genevois, and P. Pareige, Characterisation of Cr, Si and P Distribution at Dislocations and Grain-Boundaries in Neutron Irradiated Fe–Cr Model Alloys of Low Purity, J. Nucl. Mater., 2013, 434, p 49–55.

    Article  CAS  Google Scholar 

  73. W.K. Yang, X. Jiang, X.L. Tian, H. Hou, and Y.H. Zhao, Phase-Field Simulation of Nano-α′ precipitates Under Irradiation and Dislocations, J. Mater. Res. Technol., 2023, 22, p 1307–1321.

    Article  CAS  Google Scholar 

  74. W.D. Callister, Fundamentals of materials science and engineering: an integrated approach, 5th ed. Wiley, London, 2018.

    Google Scholar 

  75. C. Daniels, P. Bellon, and R.S. Averback, Radiation-Resistant Binary Solid Solutions via Vacancy Trapping on Solute Clusters, Materialia, 2021, 20, 101261.

    Article  CAS  Google Scholar 

  76. L.H. Zhu, Y.S. Li, C.W. Liu, S. Chen, S.J. Shi, and S.S. Jin, Effect of Applied Strain on Phase Separation of Fe–28 at.% Cr Alloy: 3D Phase-Field Simulation, Modell. Simul. Mater. Sci. Eng., 2018, 26, 035015.

    Article  Google Scholar 

  77. M.P. Gururajan and T.A. Abinandanan, Phase Field Study of Precipitate Rafting Under a Uniaxial Stress, Acta Mater., 2007, 55, p 5015–5026.

    Article  CAS  Google Scholar 

  78. L.Q. Chen, Chemical Potential and Gibbs Free Energy, MRS Bull., 2019, 44, p 520–523.

    Article  Google Scholar 

  79. D. Wang, Y.S. Li, S.J. Shi, X.W. Tong, and Z.W. Yan, Phase-Field Simulation of γ’ Precipitates Rafting and Creep Property of Co-Base Superalloys, Mater. Des., 2020, 196, 109077.

    Article  CAS  Google Scholar 

  80. Y.S. Li, H. Zhu, L. Zhang, and X.L. Cheng, Phase Decomposition and Morphology Characteristic in Thermal Aging Fe–Cr Alloys Under Applied Strain: A Phase-Field Simulation, J. Nucl. Mater., 2012, 429, p 13–18.

    Article  CAS  Google Scholar 

  81. S. Sugathan and S. Bhattacharya, A Phase-Field Study of Elastic Stress Effects on Phase Separation in Ternary Alloys, Comput. Mater. Sci., 2020, 172, 109284.

    Article  CAS  Google Scholar 

  82. D. Sun and J.J. Zhao, Phase-Field Simulation of Dislocation Interaction with Damage Loops Created by Irradiation in Tungsten, Comput. Mater. Sci., 2022, 210, 111031.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52275342) and the Fundamental Research Funds for the Central Universities (No. 30921013107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Shi, S., Sang, P. et al. Multi-Phase-Field Simulation of the Dynamic Dragging of Dislocation on the Solute Atoms and Point Defects. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08484-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08484-2

Keywords

Navigation