Skip to main content
Log in

Molecular Dynamics Simulation of Portevin–Le Chatelier Effect in Al-Mg Alloys: Effects of Solute Concentration, Temperature, and Tensile Rate

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The interaction between dislocation and solute atoms during uniaxial tensile-loading deformation was simulated based on molecular dynamics. It is proved from the microscopic view (atomic level) that the essence of Portevin–Le Chatelier (PLC) effect originates from the influence of the solute atmosphere on the dislocation motion. The formation of the solute atmosphere is caused by lattice distortion. The lattice distortion increases the energy of the system, which promote the spontaneous diffusion of solute atoms through vacancies to the vicinity of edge dislocations to reduce the energy of the system. The simulation results show that higher solute atom concentration, lower strain rate, and temperature make the PLC effect more significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Wen, Y.M. Zhao, and J.G. Morris, The Effect of Mg Precipitation on the Mechanical Properties of 5xxx Aluminum Alloys, Mater. Sci. Eng. A, 2005, 392(1), p 136–144.

    Article  Google Scholar 

  2. D. Zhemchuzhnikova, M. Lebyodkin, D. Yuzbekova, T. Lebedkina, A. Mogucheva, and R. Kaibyshev, Interrelation Between the Portevin Le–Chatelier Effect and Necking in AlMg Alloys, Int. J. Plast., 2018, 110, p 95–109.

    Article  CAS  Google Scholar 

  3. C.Y. Cui, R. Zhang, Y.Z. Zhou, and X.F. Sun, Portevin–Le Châtelier Effect in Wrought Ni-Based Superalloys: Experiments and Mechanisms, J. Mater. Sci. Technol., 2020, 51, p 16–31.

    Article  CAS  Google Scholar 

  4. C.L. Mao, C.X. Liu, L.M. Yu, H.J. Li, and Y.C. Liu, The Correlation Among Microstructural Parameter and Dynamic Strain Aging (DSA) in Influencing the Mechanical Properties of a Reduced Activated Ferritic-Martensitic (RAFM) Steel, Mater. Sci. Eng. A, 2019, 732, p 90–98.

    Article  Google Scholar 

  5. Z.T. Bai and Y. Fan, Abnormal Strain Rate Sensitivity Driven by A Unit Dislocation-Obstacle Interaction in bcc Fe, Phys. Rev. Lett., 2018, 120(12), p 125504.

    Article  CAS  Google Scholar 

  6. J. Xu, C.M. Cao, P. Gu, and L.M. Peng, Microstructures, Tensile Properties and Serrated Flow of AlxCrMnFeCoNi High Entropy Alloys, Trans. Nonferrous Met. Soc. China, 2020, 30(3), p 746–755.

    Article  CAS  Google Scholar 

  7. J.B. Xu, B. Holmedal, O.S. Hopperstad, T. Mánik, and K. Marthinsen, Dynamic Strain Ageing in an AlMg Alloy at Different Strain Rates and Temperatures: Experiments and Constitutive Modelling, Int. J. Plast., 2022, 151, p 103215.

    Article  CAS  Google Scholar 

  8. H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Šachl, and H. Neuhäuser, Portevin–LeChatelier Effect in Al-Mg Alloys: Influence of Obstacles-Experiments and Modelling, Comput. Mater. Sci., 2007, 39(1), p 106–112.

    Article  CAS  Google Scholar 

  9. L.P. Kubin, C. Fressengeas, and G. Ananthakrishna, Collective behaviour of dislocations in plasticity. In: Dislocations in solids, F.R.N. Nabarro and M.S. Duesbery, Ed., vol. 11 (Elsevier, 2002), pp. 101–192

    Chapter  Google Scholar 

  10. Q. Hu, Q. Zhang, S. Fu, P. Cao, and M. Gong, Influence of Precipitation on the Portevin–Le Chatelier Effect in Al-Mg Alloys, Theor. Appl. Mech. Lett., 2011, 1(1), p 011007.

    Article  Google Scholar 

  11. C. Schwink and A. Nortmann, The Present Experimental Knowledge of Dynamic Strain Ageing in Binary fcc Solid Solutions, Mater. Sci. Eng. A, 1997, 234, p 1–7.

    Article  Google Scholar 

  12. J.Z. Chen, L. Zhen, L.W. Fan, S.J. Yang, S.L. Dai, and W.Z. Shao, Portevin–Le Chatelier Effect in Al-Zn-Mg-Cu-Zr Aluminum Alloy, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1071–1075.

    Article  CAS  Google Scholar 

  13. P. Hähner, On the Critical Conditions of the Portevin–Le Chatelier Effect, Acta Mater., 1997, 45(9), p 3695–3707.

    Article  Google Scholar 

  14. P. Hähner, A. Ziegenbein, E. Rizzi, and H. Neuhäuser, Spatiotemporal Analysis of Portevin–Le Châtelier Deformation Bands: Theory, Simulation, and Experiment, Phys. Rev. B, 2002, 65(13), p 134109.

    Article  Google Scholar 

  15. F.B. Klose, A. Ziegenbein, F. Hagemann, H. Neuhäuser, P. Hähner, M. Abbadi, and A. Zeghloul, Analysis of Portevin–le Chatelier Serrations of Type Bin Al-Mg, Mater. Sci. Eng. A, 2004, 369(1–2), p 76–81.

    Article  Google Scholar 

  16. S.R. Zhang, P.G. Mccormick, and Y. Estrin, The Morphology of Portevin–Le Chatelier Bands: Finite Element Simulation for Al-Mg-Si, Acta Mater., 2001, 49(6), p 1087–1094.

    Article  CAS  Google Scholar 

  17. G. Lasko, P. Hähner, and S. Schmauder, Finite Element Simulation of the Portevin–Le Chatelier Effect, Modell. Simul. Mater. Sci. Eng., 2005, 13(5), p 645.

    Article  CAS  Google Scholar 

  18. P. Hähner and E. Rizzi, On the Kinematics of Portevin–Le Chatelier Bands: Theoretical and Numerical Modelling, Acta Mater., 2003, 51(12), p 3385–3397.

    Article  Google Scholar 

  19. E. Rizzi and P. Hähner, On the Portevin–Le Chatelier Effect: Theoretical Modeling and Numerical Results, Int. J. Plast., 2004, 20(1), p 121–165.

    Article  CAS  Google Scholar 

  20. P.G. Mccormick and C.P. Ling, Numerical Modelling of the Portevin-Le Chatelier Effect, Acta Metall., 1995, 43(5), p 1969–1977.

    Article  CAS  Google Scholar 

  21. S. Kok, M.S. Bharathi, A.J. Beaudoin, C. Fressengeas, G. Ananthakrishna, L.P. Kubin, and M. Lebyodkin, Spatial Coupling in Jerky Flow Using Polycrystal Plasticity, Acta Mater., 2003, 51(13), p 3651–3662.

    Article  CAS  Google Scholar 

  22. X.J. Nie, H. Zhang, H.H. Zhu, Z.H. Hu, Y. Qi, and X.Y. Zeng, On the Role of Zr Content Into Portevin-Le Chatelier (PLC) Effect of Selective Laser Melted High Strength Al-Cu-Mg-Mn Alloy, Mater. Lett., 2019, 248, p 5–7.

    Article  CAS  Google Scholar 

  23. A.O. Berk and E. Mert, Investigation of Portevin-Le Chatelier Bands in 5754 Aluminum Alloy under Various Strain Paths, Procedia Struct. Integr., 2019, 21, p 120–129.

    Article  Google Scholar 

  24. P. Zhang, A.L. Song, Y.X. Fang, X.J. Yue, Y.Q. Wang, and X. Yu, A Study on the Dynamic Mechanical Behavior and Microtexture of 6082 Aluminum Alloy Under Different Direction, Vacuum, 2020, 173, p 109119.

    Article  CAS  Google Scholar 

  25. E.B. Tadmor, R. Phillips, and M. Ortizc, Hierarchical Modeling in the Mechanics of Materials, Int. J. Solids Struct., 2000, 37(1–2), p 379–389.

    Article  Google Scholar 

  26. T.S. Gates, G.M. Odegard, S.J.V. Frankland, and T.C. Clancy, Computational Materials: Multi-Scale Modeling and Simulation of Nanostructured Materials, Compos. Sci. Technol., 2005, 65(15–16), p 2416–2434.

    Article  CAS  Google Scholar 

  27. S. Bross, P. Häahner, and E.A. Steck, Mesoscopic Simulations of Dislocation Motion in Dynamic Strain Ageing Alloys, Comput. Mater. Sci., 2003, 26, p 46–55.

    Article  Google Scholar 

  28. Y. Qi, X. Chen, and M. Feng, Molecular Dynamics-Based Analysis of the Effect of Voids and HCP-Phase Inclusion on Deformation of Single-Crystal CoCrFeMnNi High-Entropy Alloy, Mater. Sci. Eng. A, 2020, 791, p 139444.

    Article  CAS  Google Scholar 

  29. Z.N. Wang, J. Li, Q.H. Fang, B. Liu, and L.C. Zhang, Investigation Into Nanoscratching Mechanical Response of AlCrCuFeNi High-Entropy Alloys Using Atomic Simulations, Appl. Surf. Sci., 2017, 416, p 470–481.

    Article  CAS  Google Scholar 

  30. M.J. Pu, Q. He, and J.Q. Zhou, Molecular Dynamic Study on the Deformation Mechanism Based on Strain Rate, Solute Atomic Concentration and Temperature in Dualphase Equiaxial Nanocrystalline AgCu Alloy, J. Alloys Compd., 2019, 795, p 241–253.

    Article  CAS  Google Scholar 

  31. A. Mahata and K. Sikdar, Molecular Dynamics Simulation of Nanometer Scale Mechanical Properties of Hexagonal Mg-Li Alloy, J. Magnes. Alloys, 2016, 4(1), p 36–43.

    Article  CAS  Google Scholar 

  32. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.

    Article  CAS  Google Scholar 

  33. X.Y. Liu and J.B. Adams, Grain-Boundary Segregation in Al-10%Mg Alloys at Hot Working Temperatures, Acta Mater., 1998, 46(10), p 3467–3476.

    Article  CAS  Google Scholar 

  34. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool, Modelling Simul, Mater. Sci. Eng., 2009, 18(1), p 015012.

    Google Scholar 

  35. A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Modell, Simul. Mater. Sci. Eng., 2012, 20(8), p 085007.

    Article  Google Scholar 

  36. S. Heredia-Avalos, C.D. Denton, J.C. Moreno-Marín, E. Martinez, and M.J. Caturl, Collision Cascade Effects Near an Edge Dislocation Dipole in Alpha-Fe: Induced Dislocation Mobility and Enhanced Defect Clustering, J. Nucl. Mater., 2021, 543, p 152459.

    Article  CAS  Google Scholar 

  37. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin, Atomic-Scale Analysis of the Segregation and Precipitation Mechanisms in A Severely Deformed Al-Mg Alloy, Acta Mater., 2014, 72, p 125–136.

    Article  CAS  Google Scholar 

  38. F.B. Klose and F. Hagemann, Investigation of the Portevin–Le Châtelier Effect in Al-3wt.%Mg Alloys by Strain-Rate and Stress-Rate Controlled Tensile Tests, Mater. Sci. Eng. A, 2001, 387, p 93–97.

    Google Scholar 

  39. M.C. Cai, L.S. Niu, T. Yu, H.J. Shi, and X.F. Ma, Strain Rate and Temperature Effects on the Critical Strain for Portevin–Le Chatelier Effect, Mater. Sci. Eng. A, 2010, 527(20), p 5175–5180.

    Article  Google Scholar 

  40. C. Brandl, P.M. Derlet, and H. Van Swygenhoven, Strain Rates in Molecular Dynamics Simulations of Nanocrystalline Metals, Philosoph. Mag., 2009, 89(34–36), p 3465–3475.

    Article  CAS  Google Scholar 

  41. D. Wang, X. He, Y. Dou, S. Wu, L. Jia, H. Cao, and W. Yang, Effect of Edge Dislocation on Solute-Enriched Clusters in Reactor Pressure Vessel Steel, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 2019, 451, p 55–60.

    Article  CAS  Google Scholar 

  42. J. Schiotz, T. Leffers, and B.N. Singh, Dislocation Nucleation and Vacancy Formation During High-Speed Deformation of fcc Metals, Phil. Mag. Lett., 2001, 81(5), p 301–309.

    Article  CAS  Google Scholar 

  43. H. Flor and H. Neuhauser, Quantitative Analysis of Stress Relaxation in Cu-30% Zn Single Crystals: Variation of Obstacle Strength and Athermal Stress, Acta Metall., 1980, 28(7), p 939–948.

    Article  CAS  Google Scholar 

  44. J. Wang, L.M. Yu, C. Li, Y. Huang, H.J. Li, and Y.C. Liu, Effect of Different Temperatures on He Atoms Behavior in α-Fe with and without Dislocations, Acta Metall. Sin., 2019, 55(2), p 274–280.

    CAS  Google Scholar 

  45. A.H. Cottrell and B.A. Bilby, Dislocation Theory of Yielding and Strain Ageing of Iron, Proc. Phys. Soc. Sect. A, 1949, 62, p 49.

    Article  Google Scholar 

  46. K.P. Peng, W.Z. Chen, and K.W. Qian, Study on Dynamic Strain Aging Phenomenon of 3004 Aluminum Alloy, Mater. Sci. Eng. A, 2006, 415(12), p 53–58.

    Article  Google Scholar 

  47. W. Wen and J.G. Morris, The Effect of Cold Rolling and Annealing on the Serrated Yielding Phenomenon of AA5182 Aluminum Alloy, Mater. Sci. Eng. A, 2004, 373(1–2), p 204–216.

    Article  Google Scholar 

  48. R. Zhang, C.G. Tian, C.Y. Cui, Y.Z. Zhou, and X.F. Sun, Portevin–Le Châtelier Effect in a Wrought Ni-Co Based Superalloy, J. Alloys Compd., 2020, 818, p 152863.

    Article  CAS  Google Scholar 

  49. H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Šachl, and H. Neuhäuser, Portevin-LeChatelier Effect in Al-Mg Alloys: Influence of Obstacles-Experiments and Modelling, Comput. Mater. Sci., 2007, 39(1), p 106–112.

    Article  CAS  Google Scholar 

  50. R.S. Fertig and S.P. Baker, Dislocation Dynamics Simulations of Dislocation Interactions and Stresses in Thin Films, Acta Mater., 2010, 58(15), p 5206–5218.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China for National Major Scientific Research Equipment (Grant No. 52127808).

Funding

This project is supported by Natural Science Foundation of Hebei Province, China (Grant No. E2019203005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junting Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Xue, H., Chu, R. et al. Molecular Dynamics Simulation of Portevin–Le Chatelier Effect in Al-Mg Alloys: Effects of Solute Concentration, Temperature, and Tensile Rate. J. of Materi Eng and Perform 32, 9884–9891 (2023). https://doi.org/10.1007/s11665-023-07825-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07825-5

Keywords

Navigation