Skip to main content
Log in

Microstructure and Deposition Mechanism of Suspension Plasma Spraying Thermal Barrier Coatings

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nanostructured ceramic coatings are a promising research hotspot in the field of thermal protection coatings. Suspension plasma spraying is a practical thermal spaying technique to produce nanostructured thermal barrier coatings. In this paper, nanostructured 8YSZ (8 wt.% yttria-stabilized zirconia) thermal barrier coatings were fabricated using feedstocks of nano-8YSZ suspension by suspension plasma spraying, which was improved from air plasma spraying equipment attached to the atomizer feedstock device. Coatings microstructural analysis and testing were carried out by scanning electron microscope (SEM), and porosity was measured in cross-sectional SEM micrograph. The single scanning deposition status of 8YSZ coatings was investigated, analyzing SEM micrographs of single scanning coatings using different process parameters that included other solvents and additional locations in the plasma jet. The results show that deposition efficiency is higher using alcohol as a solvent, and a better melting state existed in the middle of the plasma jet. The cross-sectional microstructures in different thickness coatings were comparatively researched. More defects were observed in the microstructure of thicker coating, which can be produced by more residual thermal stress. This dramatically improves the thermal cycling performance of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.H. Perepezko, The Hotter the Engine, the Better, Science, 2009, 326(5956), p 1068–1069.

    Article  CAS  Google Scholar 

  2. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280–284.

    Article  CAS  Google Scholar 

  3. K.M. Doleker, A.C. Karaoglanli, Y. Ozgurluk, and A. Kobayashi, Performance of Single YSZ, Gd2Zr2O7 and Double-Layered YSZ/Gd2Zr2O7 Thermal Barrier Coatings in Isothermal Oxidation Test Conditions, Vacuum, 2020, 177, p 109401. https://doi.org/10.1016/j.vacuum.2020.109401

    Article  CAS  Google Scholar 

  4. O. Odabas, Y. Ozgurluk, D. Ozkan et al., Investigation of Vermiculite Infiltration Effect on Microstructural Properties of Thermal Barrier Coatings (TBCs) Produced by Electron Beam Physical Vapor Deposition Method (EB-PVD), Surf. Coat. Technol., 2022, 443, p 128645.

    Article  Google Scholar 

  5. K. Doleker, O. Mert, A. Yasin, K. Hayrettin, and C. Abdullah, Evaluation of Oxidation and Thermal Cyclic Behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs, Surf. Coat. Technol., 2019, 371, p 262.

    Article  CAS  Google Scholar 

  6. M. Ozgurluk, Investigation of the Effect of V2O5 and Na2SO4 Melted Salts on Thermal Barrier Coatings under Cyclic Conditions, Anti-Corros. Methods Mater., 2019, 66(5), p 644–650.

    Article  CAS  Google Scholar 

  7. K.M. Doleker, O. Odabas, Y. Ozgurluk et al., Effect of high Temperature Oxidation on Inconel 718 and Inconel 718/YSZ/Gd2Zr2O7, Mater. Res. Express, 2019, 6(8), p 086456.

    Article  CAS  Google Scholar 

  8. A. Yo, A. Ack, and B. Ha, Comparison of Calcium-Magnesium-Alumina-Silicate (CMAS) Resistance Behavior of Produced with Electron Beam Physical Vapor Deposition (EB-PVD) Method YSZ and Gd 2 Zr 2 O 7 /YSZ Thermal Barrier Coatings Systems, Vacuum, 2021, 194, p 110576.

    Article  Google Scholar 

  9. A. Yo, K.M. Doleker, C. Ha et al., Investigation of Calcium-Magnesium-Alumino-Silicate (CMAS) Resistance and Hot Corrosion Behavior of YSZ and La2Zr2O7/YSZ Thermal Barrier Coatings (TBCs) Produced with CGDS Method, Surf. Coat. Technol., 2021, 411, p 126969.

    Article  Google Scholar 

  10. Yasin Ozgurluk, Doleker, et al., Hot Corrosion Behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 Thermal Barrier Coatings Exposed to Molten Sulfate and Vanadate Salt, Appl. Surf. Sci. A J. Devot. Propert. Interf. Relat. Synth. Behav. Mater., 2018, 438(30), p 96–113.

    CAS  Google Scholar 

  11. M. Karaoglanli, Interface Failure Behavior of Yttria Stabilized zirconia (YSZ), La2Zr2O7, Gd2Zr2O7, YSZ/La2Zr2O7 and YSZ/Gd2Zr2O7 Thermal Barrier Coatings (TBCs) in Thermal Cyclic Exposure, Mater. Characteriz., 2020, 159, p 110072.

    Article  CAS  Google Scholar 

  12. E. Lugscheider, K. Bobzin, S. Barwulf et al., Mechanical Properties of EB-PVD-Thermal Barrier Coatings by Nanoindentation, Surf. Coat. Technol., 2001, 138(1), p 9–13.

    Article  CAS  Google Scholar 

  13. K.D. Bouzakis, A. Lontos, N. Michailidis et al., Determination of Mechanical Properties of Electron Beam-Physical Vapor Deposition-Thermal Barrier Coatings (EB-PVD-TBCs) by Means of Nanoindentation and Impact Testing, Surf. Coat. Technol., 2003, 163, p 75–80.

    Article  Google Scholar 

  14. T. Goto, Thermal Barrier Coatings Deposited by Laser CVD, Surf. Coat. Technol., 2005, 198(1–3), p 367–371.

    Article  CAS  Google Scholar 

  15. K.M. Doleker, Y. Ozgurluk, Y. Kahraman et al., Oxidation and Hot Corrosion Resistance of HVOF/EB-PVD Thermal Barrier Coating System, Surface Coat. Technol., 2021, 409, p 126862.

    Article  CAS  Google Scholar 

  16. Y. Ozgurluk, K. Doleker, D. Ozkan et al., Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts, Coatings, 2019, 9(3), p 166.

    Article  Google Scholar 

  17. O.H. Ahlatci, Isothermal Oxidation Behavior of Gadolinium Zirconate (Gd2Zr2O7) Thermal Barrier Coatings (TBCs) produced by Electron Beam Physical Vapor Deposition (EB-PVD) Technique, Open Chem., 2018, 16(1), p 986.

    Article  Google Scholar 

  18. H.B. Guo, S.K. Gong, and H.B. Xu, Evaluation of Hot-Fatigue Behaviors of EB-PVD Gradient Thermal Barrier Coatings, Mater. Sci. Eng. A-Struct. Mater. Propert. Microst. Process., 2002, 325(1–2), p 261–269.

    Article  Google Scholar 

  19. Karaoglanli AC, Ozgurluk Y, Doleker KM. (2020) Comparison of Microstructure and Oxidation Behavior of CoNiCrAlY Coatings Produced by APS, SSAPS, D-Gun, HVOF and CGDS Techniques. Vacu. Technol. Appl. Ion Phys. Int. J. Abstract. Service Vacu. Sci. Technol. 180: 109609

  20. M. Kaplan, M. Uyaner, Y. Ozgurluk et al., Evaluation of Hot Corrosion Behavior of APS and HVOF Sprayed Thermal Barrier Coatings (TBCs) Exposed to Molten Na2SO4+V2O5 Salt at 1000°C, Eng. Des. Appl., 2019, 444, p 59.

    Google Scholar 

  21. K.M. Doleker, Y. Ozgurluk, A.S. Parlakyigit, D. Ozkan, T. Gulmez, and A.C. Karaoglanli, Oxidation Behavior of NiCr/YSZ Thermal Barrier Coatings (TBCs), Open Chem., 2018, 16(1), p 876–881. https://doi.org/10.1515/chem-2018-0096

    Article  CAS  Google Scholar 

  22. R. Jaworski, L. Pawlowski, C. Pierlot et al., Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings, J. Therm. Spray Technol., 2010, 19(1–2), p 240–247.

    Article  CAS  Google Scholar 

  23. S. Kozerski, L. Łatka, L. Pawlowski et al., Preliminary Study on Suspension Plasma Sprayed ZrO2+8wt.% Y2O3 Coatings, J. Europ. Ceram. Soc., 2011, 31(12), p 2089–2098.

    Article  CAS  Google Scholar 

  24. R. Rampon, C. Filiatre, and G. Bertrand, Suspension Plasma Spraying of YPSZ Coatings: Suspension Atomization and Injection, J. Therm. Spray Technol., 2008, 17(1), p 105–114.

    Article  CAS  Google Scholar 

  25. R. Jaworski, L. Pawlowski, F. Roudet et al., Characterization of Mechanical Properties of Suspension Plasma Sprayed TiO2 Coatings Using Scratch Test, Surf. Coat. Technol., 2008, 202(12), p 2644–2653.

    Article  CAS  Google Scholar 

  26. A. Bacciochini, G. Montavon, J. Ilavsky et al., Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (Similar to 50 nm), J. Therm. Spray Technol., 2010, 19(1–2), p 198–206.

    Article  CAS  Google Scholar 

  27. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1–2), p 226–239.

    Article  Google Scholar 

  28. H. Kassner, R. Siegert, D. Hathiramani et al., Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115–123.

    Article  CAS  Google Scholar 

  29. P. Zhang, A. Navrotsky, B. Guo et al., Energetics of Cubic and Monoclinic Yttrium Oxide Polymorphs: Phase Transitions, Surface Enthalpies, and Stability at the Nanoscale, J. Phys. Chem. C, 2008, 112(4), p 932–938.

    Article  CAS  Google Scholar 

  30. C.J. Wang, Y. Wang, Y.L. Cheng et al., Synthesis of Nanocrystalline La2O3-Y2O3-ZrO2 Solid Solutions by Hydrothermal Method: A Crystal Growth and Structural Study, J. Cryst. Growth, 2011, 335(1), p 165–171.

    Article  CAS  Google Scholar 

  31. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Thermal Shock Behavior of 8YSZ and Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying, Ceram Int., 2012, 38, p 3595–3606.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Major Project (2017-VI-0020-0093) of the Ministry of Science and Technology of China. This work was jointly supported by the National Natural Science Foundation (NSFC) (No. 51671208), and Fundamental Research Funds in Heilongjiang Provincial Universities (No. 135509102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Wang, C., Wang, Y. et al. Microstructure and Deposition Mechanism of Suspension Plasma Spraying Thermal Barrier Coatings. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08410-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08410-6

Keywords

Navigation