Skip to main content
Log in

Study on Friction Properties of In Situ Synthesized (AlB2 + Al2O3)/A356 Composite

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, we designed the A356-B2O3-KBF4 reaction system to synthesize (AlB2 + Al2O3)/A356 biphasic particles-reinforced aluminum matrix composite with varying weight percentages (2%, 4%, 6%, and 8%). The synthesis was achieved through mechanical mixing and mixed salt reaction. We studied the friction and wear performance of the composite at room temperature using XRD, PC, SEM, EDS, laser confocal microscopy, and microhardness analysis. Our results indicate that the AlB2 and Al2O3 duplex-enhanced particles were effectively synthesized, with predominantly short rod morphology and local clustering observed for the AlB2 particles. The AlB2 particles were mostly in the micron-scale range, while the Al2O3 particles were mostly in the nanoscale range, both exhibiting agglomeration phenomena. Both enhanced particles showed an agglomeration phenomenon and could grow together with the interface binding very closely. At 6 wt.% mass fraction of biphasic particles, the composite exhibited the best refinement effect on-Al grains, as well as the greatest friction reduction effect and wear resistance for both the (AlB2 + Al2O3)/A356 composite and the A356 matrix alloy. The wear mechanism was primarily abrasive wear, while the A356 matrix alloy's wear mechanism was adhesive wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. K. Ajay Kumar and C. Mallikarjuna, Wear Behavior of A356/Al2O3/MoS2 Hybrid Nanocomposites, Mater. Today Proc., 2021, 54, p 409–414.

    Article  Google Scholar 

  2. Y.A. Alghamdi, Z. Peng, Z. Almutairi et al., Assessment of Correlations for Minimum Fluidization Velocity of Binary Mixtures of Particles in Gas Fluidized Beds, Powder Technol., 2021, 394, p 1231–1239.

    Article  CAS  Google Scholar 

  3. H.H. Xi, W.Q. Ming, Y. He et al., Unveiling the Fine Microstructure of Nanoscale Composite Particles Embedded in Brittle Si Phase in an Al-Si-Cu-Mg Alloy, J. Alloys Compd., 2022, 906, p 1123–1129.

    Article  Google Scholar 

  4. Y. Wang, H. Toda, Y. Xu et al., In-Situ 3D Observation of Hydrogen-Assisted Particle Damage Behavior in 7075 Al Alloy by Synchrotron X-ray Tomography, Acta Mater., 2022, 227, p 758–768.

    Article  Google Scholar 

  5. Z. Zhang and Y. Wang, Preparation of Nanocopper Particles on Al-Li Alloy by Salt Spray Droplets, Mater. Lett., 2022, 315, p 667–678.

    Article  Google Scholar 

  6. Q. Niu, S. Li, Y. Chen et al., A Constitutive Model of Al/50 wt%Sip Composites Considering Particle Damage Effects, Mater. Sci. Eng. A, 2022, 836, p 759–767.

    Article  Google Scholar 

  7. X.C. Tong and A.K. Ghosh, Fabrication of In Situ TiC Reinforced Aluminum Matrix Composites, J. Mater. Sci., 2001, 36, p 4059–4069.

    Article  CAS  Google Scholar 

  8. Z. Fan, Y. Wang, Y. Zhang et al., Grain Refining Mechanism in the Al/Al–Ti–B System, Acta Mater., 2015, 84, p 292–304.

    Article  CAS  Google Scholar 

  9. C.-Y. Liu, G.-B. Teng, Z.-Y. Ma et al., Effects of Sc and Zr Microalloying on the Microstructure and Mechanical Properties of High Cu Content 7xxx Al Alloy, Int. J. Miner. Metall. Mater., 2019, 26(12), p 1559–1569.

    Article  CAS  Google Scholar 

  10. Q. Yan, G. Chen, Z. Zhang et al., In-Situ Fabrication of Submicron α-Al2O3 Particle Reinforced AlSi9Cu3 Alloy Matrix Composites by TIG arc Process, Mater. Res. Express, 2019, 6(6), p 489–497.

    Article  Google Scholar 

  11. H. Su, W. Gao, Z. Feng et al., Processing, Microstructure and Tensile Properties of Nano-Sized Al2O3 Particle Reinforced Aluminum Matrix Composites, Mater. Des. (1980–2015), 2012, 36, p 590–596.

    Article  CAS  Google Scholar 

  12. M. Karbalaei Akbari, O. Mirzaee and H.R. Baharvandi, Fabrication and Study on Mechanical Properties and Fracture Behavior of Nanometric Al2O3 Particle-Reinforced A356 Composites Focusing on the Parameters of Vortex Method, Mater. Des., 2013, 46, p 199–205.

    Article  CAS  Google Scholar 

  13. Y. Zhao, S. Zhang, G. Chen et al., Effects of Molten Temperature on the Morphologies of In Situ Al3Zr and ZrB2 Particles and Wear Properties of (Al3Zr+ZrB2)/Al Composites, Mater. Sci. Eng. A, 2007, 457(1–2), p 156–161.

    Article  Google Scholar 

  14. S. Zhang, Y. Zhao, X. Cheng et al., High-Energy Ultrasonic Field Effects on the Microstructure and Mechanical Behaviors of A356 Alloy, J. Alloys Compd., 2009, 470(1–2), p 168–172.

    CAS  Google Scholar 

  15. S. Zhang, Y. Zhao, G. Chen et al., (Al2O3+Al3Zr)/A356 Nanocomposites Fabricated by Magnetochemistry In Situ Reaction, J. Alloys Compd., 2009, 475(1–2), p 261–267.

    Article  CAS  Google Scholar 

  16. Y. Zhao, S. Zhang, G. Chen et al., (ZrB2+Al2O3+Al3Zr)p/Al–4Cu Composite Synthesized by Magneto-Chemical Melt Reaction, Mater. Sci. Eng. A, 2008, 487(1–2), p 1–6.

    Article  Google Scholar 

  17. S. Mozammil, J. Karloopia, R. Verma et al., Effect of Varying TiB2 Reinforcement and Its Ageing Behaviour on Tensile and Hardness Properties of In-Situ Al-45%Cu-xTiB2 Composite, J. Alloys Compd., 2019, 793, p 454–466.

    Article  CAS  Google Scholar 

  18. Y.-Y. Gao, F. Qiu, R. Geng et al., Effects of Nanosized TiCp Dispersion on the High-Temperature Tensile Strength and Ductility of In Situ TiCp/Al-Cu-Mg-Si Nanocomposites, J. Alloys Compd., 2019, 774, p 425–433.

    Article  CAS  Google Scholar 

  19. R. Soundararajan, S. Sivasankaran, N. Babu et al., Appraisal of Tribological Properties of A356 with 20% SiC Composites Under Dry Sliding Condition, J. Braz. Soc. Mech. Sci. Eng., 2020, 42(3), p 7–16.

    Article  Google Scholar 

  20. T. Tunçay, D. Özyürek, D. Dişpinar et al., The Effects of Cr and Zr Additives on the Microstructure and Mechanical Properties of A356 Alloy, Trans. Indian Inst. Met., 2020, 73(5), p 1273–1285.

    Article  Google Scholar 

  21. E. Erzi and M. Tiryakioğlu, A Simple Procedure to Determine Incoming Quality of Aluminum Alloy Ingots and Its Application to A356 Alloy Ingots, Int. Metalcast., 2020, 14, p 999–1004.

    Article  Google Scholar 

  22. G. Sigworth, Understanding Quality in Aluminum Castings, Int. Metalcast., 2011, 5, p 7–22.

    Article  CAS  Google Scholar 

  23. Z. Zhao, Y. Ma, H. Wan et al., Preparation and Tribological Behaviors of Polyamide-Imide/Polytetrafluoroethylene Lubricating Coatings Reinforced by In-Situ Synthesized CeO2 Nanoparticles, Polym. Test., 2021, 96, p 58–69.

    Article  Google Scholar 

  24. H. Wan, Y. Jia, Y. Ye et al., Tribological Behavior of Polyimide/Epoxy Resin-Polytetrafluoroethylene Bonded Solid Lubricant Coatings Filled with In Situ-Synthesized Silver Nanoparticles, Prog. Org. Coat., 2017, 106, p 111–118.

    Article  CAS  Google Scholar 

  25. Y. Guo, D. Wang and S. Liu, Tribological Behavior of In Situ Ag Nanoparticles/Polyelectrolyte Composite Molecular Deposition Films, Appl. Surf. Sci., 2010, 256(6), p 1714–1719.

    Article  CAS  Google Scholar 

  26. Y. Ma, H. Wan, Y. Ye et al., In-Situ Synthesis of Size-Tunable Silver Sulfide Nanoparticles to Improve Tribological Properties of the Polytetrafluoroethylene-Based Nanocomposite Lubricating Coatings, Tribol. Int., 2020, 148, p 12–21.

    Article  Google Scholar 

  27. J.P. Singh, S. Singh, T. Nandi et al., Development of Graphitic Lubricant Nanoparticles Based Nanolubricant for Automotive Applications: Thermophysical and Tribological Properties Followed by IC Engine Performance, Powder Technol., 2021, 387, p 31–47.

    Article  CAS  Google Scholar 

  28. P.J. Shi, H.L. Yu, H.M. Wang et al., Tribological Behaviour of Surface Modified Copper Nanoparticles as lubricating Additives, Phys. Procedia, 2013, 50, p 461–465.

    Article  CAS  Google Scholar 

  29. L.Z.Y. Jiao, Preparation and Wear Properties of (Al3Zr+ZrB2)P/2124 Composites Material with In-Situ Process, Adv. Mater. Res., 2012, 600, p 199–203.

    Article  CAS  Google Scholar 

  30. L. Qi, Z. Li, Q. Zhang et al., Electromagnetic Stirring Control for Resistance Spot Welding of SiCp/Al Composites, J. Manuf. Process., 2021, 68, p 1271–1279.

    Article  Google Scholar 

  31. M. Li, N. Omura, Y. Murakami et al., A Comparative Study of the Primary Phase Formation in Al–7 wt% Si and Al–17 wt% Si Alloys Solidified by Electromagnetic Stirring Processing, Mater. Today Commun., 2020, 24, p 667–679.

    Google Scholar 

  32. Y. Zhang, R. Li, P. Chen et al., Tuning the Microstructure Morphology and Genetic Mechanical Properties of 2219 Al Alloy with Ultrasonic Treatment, J. Alloys Compd., 2020, 846, p 675–685.

    Article  Google Scholar 

  33. Y. Jia, D. Song, N. Zhou et al., The Growth Restriction Effect of TiCN Nanoparticles on Al-Cu-Zr Alloys via Ultrasonic Treatment, Ultrason Sonochem., 2021, 80, p 105829.

    Article  CAS  Google Scholar 

  34. W. Wolf and E.M. Mazzer, The Influence of Particle Size and Heat Treatments on the Transformation Energies of a Gas Atomized Cu-Al-Ni-Mn Shape Memory Alloy, Thermochim. Acta, 2022, 707, p 158–168.

    Article  Google Scholar 

  35. H. Mao, C. Li, Y. Dong et al., The effect of Mn on particles morphology and property of 5 wt% TiB2/Al-4.5Cu-0.4Mn alloys, J. Alloys Compd., 2022, 904, p 23–31.

    Article  Google Scholar 

  36. K. Su, Q. Zhang, H. Hou et al., Properties and Microstructure Evolution of Unfired Al–Si Incorporated Al2O3–C Slide Plate Materials with Trace Nano-Al2O3 Particles, Ceram. Int., 2021, 47(23), p 33641–33650.

    Article  CAS  Google Scholar 

  37. P. Zhang, X. Yue, Q. Zhang et al., Investigation on the Influence of SiC Particle Parameters on the Machinability of SiCp/Al Composite, Vacuum, 2021, 191, p 56–67.

    Article  Google Scholar 

  38. L. Yuan, J. Han, J. Liu et al., Mechanical Properties and Tribological Behavior of Aluminum Matrix Composites Reinforced with In-Situ AlB2 Particles, Tribol. Int., 2016, 98, p 41–47.

    Article  CAS  Google Scholar 

  39. R.G. Hidalgo-Hernandez, N. Plaza and O.M. Suárez, A Study on Tribological Characterization of Al-Cu-Mg-B Composites Subjected to Mechanical Wear, Sci. Eng. Compos. Mater., 2014, 21(3), p 566–576.

    Article  Google Scholar 

  40. Y. Bai, Y. Guo, J. Li et al., Effect of Al2O3 Nanoparticle Reinforcement on the meChanical and High-Temperature Tribological Behavior of Al-7075 Alloy, Proc. Inst. Mech. Eng. J J. Eng. Tribol., 2016, 231(7), p 900–909.

    Article  Google Scholar 

  41. K. Yang, L. An and L. Cheng, Microstructure and Tribological Behavior of Al2O3 Particle Reinforced Al Matrix Composites Fabricated by Spark Plasma Sintering, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2019, 34(5), p 1013–1017.

    Article  CAS  Google Scholar 

  42. S. Agrawal, A.K. Ghose and I. Chakrabarty, Effect of rotary electromagnetic stirring during solidification of In-situ Al-TiB2 composites, Mater. Des., 2017, 113, p 195–206.

    Article  CAS  Google Scholar 

  43. H.B. Wu, J.Z. Li, D.F. Li et al., Microstructures and Properties of Spinning for Silicon Carbide Particle Reinforced Aluminum Composite, Mater. Sci. Forum, 2019, 944, p 571–580.

    Article  Google Scholar 

  44. V. Patil, S. Janawade, S.N. Kulkarni et al., Studies on Mechanical Behavior and Morphology of Alumina Fibers Reinforced with Aluminium-4.5% Copper Alloy Metal Matrix Composites, Mater. Today Proc., 2021, 46, p 99–106.

    Article  CAS  Google Scholar 

  45. X.R. Li, W.B. Tang and J.T. Niu, Investigation on Joining Mechanism of SiC Particle Reinforced Aluminum Matrix Composite (Al/SiCp-MMC) by Resistance Spot Welding, Mater. Sci. Forum, 2011, 704–705, p 1399–1405.

    Article  Google Scholar 

  46. Y.L. Che, A. Shaban, G. Yu et al., Laser Beam Welding of SiC Particle Reinforced Aluminum Metal Matrix Composite, Proc. Spie Int. Soc. Opt., 1999, 36, p 36–42.

    Google Scholar 

  47. N. Kumar, R.K. Gautam and S. Mohan, In-Situ Development of ZrB2 Particles and Their Effect on Microstructure and Mechanical Properties of AA5052 Metal-Matrix Composites, Mater. Des., 2015, 80, p 129–136.

    Article  CAS  Google Scholar 

  48. H. Zhu, Z. Yu, B. Hua et al., Chemical Reaction Mechanism, Microstructural Characteristics and Mechanical Properties of In Situ (α-Al2O3+ZrB2)/Al Composites, Mater. Chem. Phys., 2017, 196, p 45–51.

    Article  CAS  Google Scholar 

  49. S.M. Dar, Y. Zhao, X. Kai, et al. Effect of External Pressure on the Microstructure and Mechanical Properties of In Situ (ZrB2 + Al2O3/Al3Zr)/6016 Nanocomposites. Int. Metalcast. (2022).

  50. N. Ramadoss, K. Pazhanivel, A. Ganeshkumar, et al. Microstructural, Mechanical and Corrosion Behaviour of B4C/BN-Reinforced Al7075 Matrix Hybrid Composites. Int. Metalcast. (2022).

  51. A.K. Yadav, V. Kumar, A. Ankit et al., Microstructure and Mechanical Properties of an In Situ Al 356-Mg2Si-TiB2 Hybrid Composite Prepared by Stir and Cooling Slope Casting. Int. Metalcast. (2022).

  52. L. Jiao, B. Wang, Y. Zhao et al., Microstructure and Mechanical Properties of In Situ AlB2/A356 Composites Under T6 Treatment. Int. Metalcast. (2022).

  53. G. Li, T. Xu, H. Wang et al., Microstructure Study of Hot Rolling Nanosized In-Situ Al2O3 Particle Reinforced A356 Matrix Composites, J. Alloys Compd., 2021, 855(1), p 1571.

    Google Scholar 

  54. H. Ahmadian, A.M. Sadoun, A. Fathy et al., Utilizing a Unified Conceptual Dynamic Model for Prediction of Particle Size of Duel-Matrix Nanocomposites During Mechanical Alloying, Powder Technol., 2023, 418, p 118291.

    Article  CAS  Google Scholar 

  55. G.S. Alsoruji, A.M. Sadoun, M.A. Elaziz et al., On the Prediction of the Mechanical Properties of Ultrafine Grain Al-TiO2 Nanocomposites Using a Modified Long-Short Term Memory Model with Beluga Whale Optimizer, J. Mater. Res. Technol., 2023, 23, p 4075–4088.

    Article  CAS  Google Scholar 

  56. A.M. Sadoun, I.M.R. Najjar, A. Fathy et al., An Enhanced Dendritic Neural Algorithm to Predict the Wear Behavior of Alumina Coated Silver Reinforced Copper Nanocomposites, Alex. Eng. J., 2023, 65, p 809–823.

    Article  Google Scholar 

  57. I.R. Najjar, A.M. Sadoun, A. Fathy et al., Prediction of Tribological Properties of Alumina-Coated, Silver-Reinforced Copper Nanocomposites Using Long Short-Term Model Combined with Golden Jackal Optimization, Lubricants, 2022, 10(11), p 277.

    Article  CAS  Google Scholar 

  58. A.M. Sadoun, I.R. Najjar, G.S. Alsoruji et al., Utilization of Improved Machine Learning Method Based on Artificial Hummingbird Algorithm to Predict the Tribological Behavior of Cu-Al2O3 Nanocomposites Synthesized by In Situ Method, Mathematics, 2022, 10(8), p 1266.

    Article  Google Scholar 

  59. A. Mohamed, M.M. Mohammed, A.F. Ibrahim et al., Effect of Nano Al2O3 Coated Ag Reinforced Cu Matrix Nanocomposites on Mechanical and Tribological Behavior Synthesis by P/M Technique, J. Compos. Mater., 2020, 50, p 4921–4928.

    Article  Google Scholar 

  60. M.S. El-Wazery, A. El-Desouky, O. Hamed et al., Electrical and Mechanical Performance of Zirconia-Nickel Functionally Graded Materials, Int. J. Eng., 2013, 26, p 375–382.

    Article  Google Scholar 

  61. A.M. Sadoun, A.F. Meselhy and A.W. Deabs, Improved Strength and Ductility of Friction Stir Tailor-Welded Blanks of Base Metal AA2024 Reinforced with Interlayer Strip of AA7075, Results Phys., 2020, 16, p 102911.

    Article  Google Scholar 

  62. A.M. Sadoun, A. Wagih, A. Fathy and A.R.S. Essa, Effect of Tool Pin Side Area Ratio on Temperature Distribution in Friction Stir Welding, Results Phys., 2019, 15, p 102814.

    Article  Google Scholar 

  63. N. El Mahallawy, A. Fathy, M. Hassan, et al. Evaluation of Mechanical Properties and Microstructure of Al/Al–12%Si Multilayer via Warm Accumulative Roll Bonding Process. J. Compos. Mater. 2017.

  64. A.F. Meselhy and M.M. Reda, Investigation of Mechanical Properties of Nanostructured Al-SiC Composite Manufactured by Accumulative Roll Bonding, J. Compos. Mater., 2019, 53, p 3951–3964.

    Article  CAS  Google Scholar 

  65. M. Elwan, A. Fathy, A. Wagih et al., Fabrication and Investigation on the Properties of Ilmenite (FeTiO3)-Based Al Composite by Accumulative Roll Bonding, J. Compos. Mater., 2020, 54, p 1259–1271.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China, Nos. 52071158, U20A20274, U1664254. High end Foreign Experts Introduction Program of the Ministry of Science and Technology of China G2022014134L, G2022014043.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Jiao, Zhiwen Wang or Yutao Zhao.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Wang, Z., Zhao, Y. et al. Study on Friction Properties of In Situ Synthesized (AlB2 + Al2O3)/A356 Composite. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08387-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08387-2

Keywords

Navigation