Skip to main content

Advertisement

Log in

Microstructure and Hardness Behavior of Friction Stir Welds of 2 GPa Strength Hot Press Forming Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot press forming (HPF) steels with a full martensite structure and 2.0 GPa strength (HPF2.0) were friction stir welded as bead-on-plate using a WC–Co12% tool. The stir zone was composed of recrystallized grains of various sizes and had comparable to or higher hardness than the base material. However, the intercritical heat-affected zone (ICHAZ) and subcritical HAZ experience softening. During the tensile test, fractures consistently occurred at the softened HAZ. The minimum hardness of the ICHAZ in the friction stir welds was 300 HV, which was similar to that in the arc welds with polygonal ferrite (328 HV) and lower than that in the laser welds with needle-like ferrite (400 HV). Remarkably, the softened width of the friction stir welds was narrower than half that of the arc welds. These results confirm the possibility of expanding the application of friction stir welding to next-generation HPF steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Reproduced from Reference 21 under the CC BY license

Fig. 12

Copyright 2022, Laser Institute of America

Similar content being viewed by others

References

  1. A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, and U. Vaidya, Materials for Automotive Lightweighting, Annu. Rev. Mater. Res., 2019, 49(1), p 327–359.

    Article  CAS  Google Scholar 

  2. P.K. Mallick, Joining for lightweight vehicles, Materials, design and manufacturing for lightweight vehicles. Elsevier, New Jersey, 2021, p 321–371. https://doi.org/10.1016/B978-0-12-818712-8.00008-2

    Chapter  Google Scholar 

  3. F. Hochhauser, W. Ernst, R. Rauch, R. Vallant, and N. Enzinger, Influence of the Soft Zone on The Strength of Welded Modern Hsla Steels, Weld. World, 2013, 56(5–6), p 77–85.

    Google Scholar 

  4. C. Kim, J.-K. Choi, M. Kang, and Y.-D. Park, A Study on the CO2 Laser Welding Characteristics of High Strength Steel up to 1500 MPa for Automotive Application, J. Achiev. Mater. Manuf. Eng., 2010, 39(1), p 79–86.

    Google Scholar 

  5. K. Kim, N. Kang, M. Kang, and C. Kim, Assessment of Heat-Affected Zone Softening of Hot-Press-Formed Steel over 2.0 GPa Tensile Strength with Bead-On-Plate Laser Welding, Appl. Sci., 2021, 11(13), p 5774.

    Article  CAS  Google Scholar 

  6. K. Kim, H. Park, N. Kang, S. Kang, M. Kang, and C. Kim, Mechanical and Microstructural Properties of Autogenous Arc Welds of 2 GPa-Strength Hot-Pressforming Steel, J. Mater. Eng. Perform., 2022, 210, p 2103.

    Google Scholar 

  7. T. Majeed, M.A. Wahid, M.N. Alam, Y. Mehta, and A.N. Siddiquee, Friction Stir Welding: A Sustainable Manufacturing Process, Mater. Today Proc., 2021, 46, p 6558–6563.

    Article  CAS  Google Scholar 

  8. M. Kimura, Y. Kusumoto, M. Kusaka, and K. Kaizu, Improving the Tensile Strength Between Pure Al and Low Carbon Steel Joint Fabricated by Friction Welding, J. Mater. Eng. Perform., 2022, 32(10), p 4655–4667. https://doi.org/10.1007/s11665-022-07396-x

    Article  CAS  Google Scholar 

  9. Y. Li, J. Zhao, J. Zhou, Y. Yang, X. Huang, and Z. Liu, Evaluation of Residual Stress Fields in Friction Stir Welded Zone Based on the Plastic Strain Increment and Mises Yield Criterion, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07477-x

    Article  Google Scholar 

  10. H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction Stir Welding of Carbon Steels, Mater. Sci. Eng., A, 2006, 429(1–2), p 50–57.

    Article  Google Scholar 

  11. C. Ling, F. Hidetoshi, T. Nobuhiro, N. Kazuhiro, N. Kiyoshi, I. Rinsei, and M. Muneo, Transformation in Stir Zone of Friction Stir Welded Carbon Steels with Different Carbon Contents, ISIJ Int., 2007, 47(2), p 299–309.

    Article  Google Scholar 

  12. Y.D. Chung, H. Fujii, R. Ueji, and N. Tsuji, Friction Stir Welding of High Carbon Steel with Excellent Toughness and Ductility, Scripta Mater., 2010, 63(2), p 223–226.

    Article  CAS  Google Scholar 

  13. R. Rai, A. De, H.K.D.H. Bhadeshia, and T. DebRoy, Review: Friction Stir Welding Tools, Sci. Technol. Weld. Joining, 2013, 16(4), p 325–342.

    Article  Google Scholar 

  14. B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, and A.M. Strauss, Friction Stir Welding: Process, Automation, and Control, J. Manuf. Process., 2014, 16(1), p 56–73.

    Article  Google Scholar 

  15. D. Micallef, D. Camilleri, A. Toumpis, A. Galloway, and L. Arbaoui, Local Heat Generation and Material Flow in Friction Stir Welding of Mild Steel Assemblies, Proc. Instit. Mech. Eng. Part L J. Mater. Des. Appl., 2015, 230(2), p 586–602.

    Google Scholar 

  16. Y. Hovanski, M.L. Santella, and G.J. Grant, Friction Stir Spot Welding of Hot-Stamped Boron Steel, Scripta Mater., 2007, 57(9), p 873–876.

    Article  CAS  Google Scholar 

  17. S.H. Hong, S.-J. Sung, and J. Pan, Failure Mode and Fatigue Behavior of Dissimilar Friction Stir Spot Welds in Lap-Shear Specimens of Transformation-Induced Plasticity Steel and Hot-Stamped Boron Steel Sheets, J. Manuf. Sci. Eng., 2015, 137(5), p 051023.

    Article  Google Scholar 

  18. A.A.M. da Silva, E. Aldanondo, P. Alvarez, E. Arruti, and A. Echeverría, Friction Stir Spot Welding of AA 1050 Al Alloy and Hot Stamped Boron Steel (22MnB5), Sci. Technol. Weld. Join., 2013, 15(8), p 682–687.

    Article  Google Scholar 

  19. S. Li, Y. Chen, J. Kang, B.S. Amirkhiz, and F. Nadeau, Friction Stir Lap Welding of Aluminum Alloy to Advanced High Strength Steel Using a Cold-Spray Deposition as an Interlayer, Mater. Lett., 2019, 239, p 212–215.

    Article  CAS  Google Scholar 

  20. M. Kang, J. Yoon, and C. Kim, Hook Formation and Joint Strength in Friction Stir Spot Welding of Al Alloy and Al-Si-Coated Hot-Press Forming Steel, Int. J. Adv. Manuf. Technol., 2020, 106(5–6), p 1671–1681.

    Article  Google Scholar 

  21. H. You, M. Kang, S. Yi, S. Hyun, and C. Kim, Comprehensive Analysis of the Microstructure and Mechanical Properties of Friction-Stir-Welded Low-Carbon High-Strength Steels with Tensile Strengths Ranging from 590 MPa to 1.5 GPa, Appl. Sci., 2021, 11(12), p 5728.

    Article  CAS  Google Scholar 

  22. S. Kaizu, Y. Shinbo, and M. Ono, Relationship Between Vickers Hardness of Laser Weld and Chemical Composition of Steel Sheets, Prepr. Natl. Meet. JWS, 1994, 55, p 118–119.

    Google Scholar 

  23. I.-H. Jeon, C. Kim, and J.-D. Kim, Hardness Estimation of Laser Welded Boron Steel Welds with the Carbon Equivalent, J. Weld. Join., 2016, 34(5), p 1–5.

    Article  Google Scholar 

  24. B.-H. Yoon, Characteristics of Sulfide Stress Cracking of High Strength Pipeline Steel Weld by Heat Input, J. Weld. Join., 2018, 36(3), p 38–44.

    Article  Google Scholar 

  25. M. Kang, J. Yoon, and C. Kim, Hook Formation and Joint Strength in Friction Stir Spot Welding of Al Alloy and Al–Si-Coated Hot-Press Forming Steel, Int. J. Adv. Manuf. Technol., 2019, 106(5–6), p 1671–1681.

    Google Scholar 

  26. P. Biswas, N.R. Mandal, O.P. Sha, and M.M. Mahapatra, Thermo-Mechanical and Experimental Analysis of double Pass Line Heating, J. Mar. Sci. Appl., 2011, 10(2), p 190–198.

    Article  Google Scholar 

  27. S. Mironov, Y.S. Sato, and H. Kokawa, Microstructural Evolution during Friction Stir-Processing of Pure Iron, Acta Mater., 2008, 56(11), p 2602–2614.

    Article  CAS  Google Scholar 

  28. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama, Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel, Mater. Trans., 2004, 45(7), p 2245–2251.

    Article  CAS  Google Scholar 

  29. G.R. Purdy and Y.J.M. Brechet, A Solute Drag Treatment of the Effects of Alloying Elements on the Rate of the Proeutectoid Ferrite Transformation in Steels, Acta Metall. Mater., 1995, 43(10), p 3763–3774.

    Article  CAS  Google Scholar 

  30. S.-J. Lee and Y.-K. Lee, Prediction of Austenite Grain Growth During Austenitization of Low Alloy Steels, Mater. Des., 2008, 29(9), p 1840–1844.

    Article  CAS  Google Scholar 

  31. W. Zexi, N. Tomoya, U. Kohsaku, M. Goro, and F. Hidetoshi, Microstructures and Tensile Properties of Friction Stir Welded 0.2%C-Si-Mn Steel, Mater. Sci. Eng. A, 2021, 799, p 140068.

    Article  Google Scholar 

  32. A. Toumpis, A. Galloway, S. Cater, and N. McPherson, Development of a Process Envelope for Friction Stir Welding of DH36 Steel–A Step Change, Mater. Des., 2014, 1980–2015(62), p 64–75.

    Article  Google Scholar 

  33. D.G. Mohan and C. Wu, A Review on Friction Stir Welding of Steels, Chin. J. Mech. Eng., 2021, 34(1), p 655.

    Article  Google Scholar 

  34. M. Al-Moussawi and A.J. Smith, Defects in Friction Stir Welding of Steel, Metallography, Microstructure, and Analysis, 2018, 7(2), p 194–202.

    Article  CAS  Google Scholar 

  35. A.K. Lakshminarayanan and V. Balasubramanian, Understanding the Parameters Controlling Friction stir Welding of AISI 409M Ferritic Stainless Steel, Met. Mater. Int., 2011, 17(6), p 969–981.

    Article  CAS  Google Scholar 

  36. K. Elangovan and V. Balasubramanian, Influences of Pin Profile and Rotational Speed of the Tool on the Formation of Friction Stir Processing zone in AA2219 Aluminium Alloy, Mater. Sci. Eng., A, 2007, 459(1–2), p 7–18.

    Article  Google Scholar 

  37. Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata, Three Defect Types in Friction Stir Welding of Aluminum Die Casting Alloy, Mater. Sci. Eng. A, 2006, 415(1–2), p 250–254.

    Article  Google Scholar 

  38. J. Yoon, C. Kim and S. Rhee, Compensation of Vertical Position Error Using a Force–Deflection Model in Friction Stir Spot Welding, Met., 2018, 8(12), p 1049. https://doi.org/10.3390/met8121049

    Article  Google Scholar 

  39. S. Nam, H.W. Lee, C. Kim, C.-Y. Jung and Y.-M. Kim, Effects of High-Power Laser Heat Input on the Mechanical Properties of GPa-Grade Advanced High Strength TRIP Steel, J. Weld. Join., 2021, 39(5), p 505–512.

    Article  Google Scholar 

  40. E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17(6), p 888–893.

    Article  CAS  Google Scholar 

  41. M. Maalekian, The Effects of Alloying Elements on Steels (I), Technische Universität Graz, Graz, Austria, 2007

  42. K. Kim, N. Kang, M. Kang and C. Kim, Effect of Laser Beam Wobbling on the Overlap Joint Strength of Hot-Press-Forming Steel Over 20 GPa Tensile Strength, J. Laser Appl., 2022, 34(1), p 12012.

    Article  Google Scholar 

  43. T. Wu, F. Zhao, H. Luo, H. Wang and Y. Li, Temperature Monitoring and Material Flow Characteristics of Friction Stir Welded 2A14-t6 Aerospace Aluminum Alloy, Mater., 2019, 12(20), p 3387.

    Article  CAS  Google Scholar 

  44. O.S. Salih, H. Ou and W. Sun, Heat Generation, Plastic Deformation and Residual Stresses in Friction stir Welding of Aluminium Alloy, Int. J. Mech. Sci., 2023, 238, p 107827.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the Industrial Strategic Technology Development Program (20014820) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea), and in part by the MOTIE (Ministry of Trade, Industry, and Energy) in Korea, under the Fostering Global Talents for Innovative Growth Program (P0017303) supervised by the Korea Institute for Advancement of Technology (KIAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheolhee Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Yoon, J., Kang, M. et al. Microstructure and Hardness Behavior of Friction Stir Welds of 2 GPa Strength Hot Press Forming Steel. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08372-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08372-9

Keywords

Navigation