Skip to main content
Log in

Hook formation and joint strength in friction stir spot welding of Al alloy and Al–Si-coated hot-press forming steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the automotive industry, the demand for ultra-high-strength steel is increasing due to the CO2 emission and safety regulations. Hot-press forming (HPF) steels are a type of boron-alloyed high-strength steel fabricated via hot-press forming, which enables both high strength and elongation. Because HPF is conducted at high temperatures (900–950 °C) for a few minutes, its surface is coated with Al–Si or Zn to prevent surface oxidation and decarburizing. However, the coating layer often influences the properties of the welds. In this study, friction stir spot welding (FSSW) is used to weld dissimilar metals, i.e., an Al alloy and Al–Si-coated HPF steel. The effects of Al–Si coating on the mechanical and metallurgical properties of the hook formation on the weld are investigated. The shape of the hook, which is formed during FSSW, changes from bent to straight shape due to the presence of Al–Si and the HPF process. The joint strength of the straight hook-shaped specimens is demonstrated to be lower than that of the bent hook-shaped specimens. This difference in strength is because the hard Fe–Al–Si intermetallic (IMC) layer on the outer surface of the hook disturbs the bending of the hook during the welding. On the outer surface of the hook, a Fe–Al–Si IMC layer of chemical composition similar to that of the coating layer formed during HPF is observed. This formation is different from the inner surface of the hook, wherein a thin Fe–Al IMC layer is reconstructed between aluminum and steel. Thus, the hard Fe–Al–Si intermetallic layer transformed during the HPF process is the primary cause of the straight hook shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stanford K (2017) Lightweighting boosts vehicle safety. Alum Int Today 30(6):10–12

    Google Scholar 

  2. Fan DW, Kim HS, De Cooman BC (2009) A review of the physical metallurgy related to the hot press forming of advanced high strength steel. Steel Res Int 80(3):241–248

    Google Scholar 

  3. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118

    Article  Google Scholar 

  4. Kim C, Kang M, Park Y (2011) Laser welding of Al-Si coated hot stamping steel. Procedia Eng 10:2226–2231

    Article  Google Scholar 

  5. Kim C-H, Choi J-K, Kang M-J, Park Y-D (2010) A study on the CO2 laser welding characteristics of high strength steel up to 1500 MPa for automotive application. J Achiev Mater Manuf Eng 39(1):79–86

    Google Scholar 

  6. Kang M, Kim C (2011) Analysis of laser and resistance spot weldments on press-hardened steel, Mater Sci Forum. Trans Tech Publ 2011(99):202–205

    Google Scholar 

  7. Sakayama T, Naito Y, Miyazakki Y, Nose T, Murayma G, Saita K, Oikawa H (2013) Dissimilar metal joining technologies for steel sheet and aluminum alloy sheet in auto body. Nippon Steel Techn Rep 103:91–98

    Google Scholar 

  8. Meschut G, Janzen V, Olfermann T (2014) Innovative and highly productive joining technologies for multi-material lightweight car body structures. J Mater Eng Perform 23(5):1515–1523. https://doi.org/10.1007/s11665-014-0962-3

    Article  Google Scholar 

  9. Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann 64(2):679–699. https://doi.org/10.1016/j.cirp.2015.05.006

    Article  Google Scholar 

  10. Agudo L, Eyidi D, Schmaranzer CH, Arenholz E, Jank N, Bruckner J, Pyzalla AR (2007) Intermetallic Fe x Al y-phases in a steel/Al-alloy fusion weld. J Mater Sci 42(12):4205–4214

    Article  Google Scholar 

  11. He X, Pearson I, Young K (2008) Self-pierce riveting for sheet materials: state of the art. J Mater Process Technol 199(1-3):27–36. https://doi.org/10.1016/j.jmatprotec.2007.10.071

    Article  Google Scholar 

  12. Han L, Chrysanthou A (2008) Evaluation of quality and behaviour of self-piercing riveted aluminium to high strength low alloy sheets with different surface coatings. Mater Des 29(2):458–468. https://doi.org/10.1016/j.matdes.2006.12.020

    Article  Google Scholar 

  13. Dilthey U, Stein L (2006) Multimaterial car body design: challenge for welding and joining. Sci Technol Weld Join 11(2):135–142

    Article  Google Scholar 

  14. Kimapong K, Watanabe T (2004) Friction stir welding of aluminum alloy to steel. Weld J 83(10):277s–282s

    Google Scholar 

  15. Taban E, Gould JE, Lippold JC (2010) Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: properties and microstructural characterization. Mater Des 31(5):2305–2311

    Article  Google Scholar 

  16. Kusuda Y (2013) Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle. Ind Robot Int J 40(3):208–212

    Article  Google Scholar 

  17. Mishra RS, Ma Z (2005) Friction stir welding and processing. Mater Sci Eng R Res 50(1-2):1–78

    Article  Google Scholar 

  18. Santella M, Hovanski Y, Pan T-Y (2012) Friction stir spot welding (FSSW) of advanced high strength steel (AHSS). SAE Int J Mater Manuf 5(2):382–387

    Article  Google Scholar 

  19. Hovanski Y, Santella ML, Grant GJ (2007) Friction stir spot welding of hot-stamped boron steel. Scr Mater 57(9):873–876. https://doi.org/10.1016/j.scriptamat.2007.06.060

    Article  Google Scholar 

  20. Hong SH, Sung S-J, Pan J (2015) Failure mode and fatigue behavior of dissimilar friction stir spot welds in lap-shear specimens of transformation-induced plasticity steel and hot-stamped boron steel sheets. J Manuf Sci Eng 137(5):051023

    Article  Google Scholar 

  21. da Silva AAM, Aldanondo E, Alvarez P, Arruti E, Echeverría A (2013) Friction stir spot welding of AA 1050 Al alloy and hot stamped boron steel (22MnB5). Sci Technol Weld Join 15(8):682–687. https://doi.org/10.1179/136217110x12785889549462

    Article  Google Scholar 

  22. Kang M, Kim C, Lee J (2012) Weld strength of laser-welded hot-press-forming steel. J Laser Appl 24(2):022004

    Article  Google Scholar 

  23. Badarinarayan H, Shi Y, Li X, Okamoto K (2009) Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets. Int J Mach Tools Manuf 49(11):814–823. https://doi.org/10.1016/j.ijmachtools.2009.06.001

    Article  Google Scholar 

  24. Bozzi S, Helbert-Etter AL, Baudin T, Criqui B, Kerbiguet JG (2010) Intermetallic compounds in Al 6016/IF-steel friction stir spot welds. Mater Sci Eng A 527(16):4505–4509. https://doi.org/10.1016/j.msea.2010.03.097

    Article  Google Scholar 

  25. Wang T, Sidhar H, Mishra RS, Hovanski Y, Upadhyay P, Carlson B (2018) Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel. Sci Technol Weld Join 23(3):249–255

    Article  Google Scholar 

  26. Wang T, Sidhar H, Mishra RS, Hovanski Y, Upadhyay P, Carlson B (2019) Effect of hook characteristics on the fracture behaviour of dissimilar friction stir welded aluminium alloy and mild steel sheets. Sci Technol Weld Join 24(2):178–184. https://doi.org/10.1080/13621718.2018.1503801

    Article  Google Scholar 

  27. Xu RZ, Cui SL, Li H, Hou YX, Wei ZC (2019) Improving hook characterization of friction stir lap welded Al alloy joint using a two-section stepped friction pin. Int J Adv Manuf Technol 102(9):3739–3746

    Article  Google Scholar 

  28. Derazkola HA, Khodabakhshi F (2019) Intermetallic compounds (IMCs) formation during dissimilar friction-stir welding of AA5005 aluminum alloy to St-52 steel: numerical modeling and experimental study. Int J Adv Manuf Technol 100(9-12):2401–2422

    Article  Google Scholar 

  29. Chen YC, Komazaki T, Tsumura T, Nakata K (2008) Role of zinc coat in friction stir lap welding Al and zinc coated steel. Mater Sci Technol 24(1):33–39

    Article  Google Scholar 

  30. Ratanathavorn W, Melander A (2017) Influence of zinc on intermetallic compounds formed in friction stir welding of AA5754 aluminium alloy to galvanised ultra-high strength steel. Sci Technol Weld Join 22(8):673–680

    Article  Google Scholar 

  31. Santella M, Hovanski Y, Frederick A, Grant G, Dahl M (2010) Friction stir spot welding of DP780 carbon steel. Sci Technol Weld Join 15(4):271–278

    Article  Google Scholar 

  32. Fan DW, Kim HS, Oh J-K, Chin K-G, De Cooman B (2010) Coating degradation in hot press forming. ISIJ Int 50(4):561–568

    Article  Google Scholar 

  33. Shome M, Tumuluru M (2015) Welding and joining of advanced high strength steels (AHSS), vol 85. Elsevier

  34. Yoon J, Kim C, Rhee S (2018) Compensation of vertical position error using a force–deflection model in friction stir spot welding. Metals 8(12):1049

    Article  Google Scholar 

  35. Yoon J, Kim C, Rhee S (2019) Performance of plunge depth control methods during friction stir welding. Metals 9(3):283

    Article  Google Scholar 

  36. Yang Q, Mironov S, Sato YS, Okamoto K (2010) Material flow during friction stir spot welding. Mater Sci Eng A 527(16):4389–4398. https://doi.org/10.1016/j.msea.2010.03.082

    Article  Google Scholar 

  37. Su P, Gerlich A, North T, Bendzsak G (2007) Intermixing in dissimilar friction stir spot welds. Metall Mater Trans A 38(3):584–595

    Article  Google Scholar 

  38. Ohishi K, Sakamura M, Ota K, Fujii H (2016) Novel dissimilar spot welding of aluminium alloy and steel sheets by friction stirring. Weld Int 30(2):91–97. https://doi.org/10.1080/09507116.2014.921088

    Article  Google Scholar 

Download references

Funding

This research was supported by a grant from the Ministry of Trade, Industry and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheolhee Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Yoon, J. & Kim, C. Hook formation and joint strength in friction stir spot welding of Al alloy and Al–Si-coated hot-press forming steel. Int J Adv Manuf Technol 106, 1671–1681 (2020). https://doi.org/10.1007/s00170-019-04716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04716-9

Keywords

Navigation