Skip to main content
Log in

Effect of Quenching, Lamellarizing, and Tempering on Reversed Austenite and Cryogenic Toughness of 9Ni Steels

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Herein, the effects of quenching, lamellarizing, and tempering (QLT) on reversed austenite and cryogenic toughness of 9Ni steels were investigated in terms of microstructure characterization, internal friction tests, and low temperature impact tests. The results showed that QLT treatment not only refined the grain effectively, but also promoted the formation of reversed austenite, thus obtaining excellent ultra-cryogenic toughness. Furthermore, QLT treatment promoted the redistribution of C, Mn, and Ni elements, so that more stable austenite was retained to room temperature. The phase transformation peak in the internal friction peak confirmed that QLT treatment effectively promoted the formation of reversed austenite, while the Snoek–Kê–Köster peak showed a strong interaction between carbon atoms and dislocations. Due to the synergistic effect of fine grain toughening and TRIP effect, the 9Ni steel treated by QLT appeared more excellent ultra-cryogenic toughness.Please check and confirm the corresponding author mail id is correctly identified.The corresponding author mail id is correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Hany, M. Milochova, K. Littrell, R. Lorange, J.-B. Vogt, E. Abi-Aad, and E. Bychkov, Advanced Characterization of Cryogenic 9Ni Steel Using Synchrotron Radiation, Neutron Scattering and 57Fe Mössbauer Spectroscopy, Mater. Design, 2018, 146, p 219–227.

    Article  CAS  Google Scholar 

  2. S.H. Chen, M.J. Zhao, X.Y. Li, and L.J. Rong, Compression Stability of Reversed Austenite in 9Ni Steel, J. Mater. Sci. Technol., 2012, 28, p 558–561.

    Article  ADS  CAS  Google Scholar 

  3. B. Fultz and J.W. Morris, The mechanical Stability of Precipitated Austenite in 9Ni Steel, Metall. Trans. A, 1985, 16, p 2251–2256.

    Article  Google Scholar 

  4. T. Oka and K. Sugino, The Study on 9% Nickel Low Carbon Steels—the Precipitation of Austenite and the Microstructure, J. JPN I. Met., 1966, 30, p 435–441.

    Article  Google Scholar 

  5. Y.-Z. Liu, C.-F. Yang, F. Chai, T. Pan, and H. Su, High Temperature Oxidation Resistance of 9Ni Steel, J. Iron Steel Res. Int., 2014, 21, p 956–963.

    Article  CAS  Google Scholar 

  6. Z.X. Qu, L.Q. Xia, and X.J. Wang, The study on Welding Technology of 9Ni Steel, Mater. Sci. Forum, 2018, 941, p 516–523.

    Article  Google Scholar 

  7. Q.-Y. Chen, Z.-H. Wang, W.-N. Zhang, and Z.-Y. Liu, Study on Microstructure and Mechanical Properties of TMCP-UFC-LT Treated Low Ni Steel, J. Phys. Conf. Ser., 2021, 254, p 012073.

    Google Scholar 

  8. M. Wang, Z.Y. Liu, and C.G. Li, Effects of Ultra-Fast Cooling After Hot Rolling and Lamellarizing on Microstructure and Cryogenic Toughness of 5%Ni Steel, Acta Metall. Sin., 2017, 53, p 947–956.

    CAS  Google Scholar 

  9. K. Zhang, H.-B. Wu, and D. Tang, High Temperature Deformation Behavior of Fe-9Ni-C Alloy, J. Iron Steel Res. Int., 2012, 19, p 58–62.

    Article  Google Scholar 

  10. Q.-Y. Chen, W.-N. Zhang, J.-K. Ren, M. Wang, Z.-L. Xie, J. Chen, and Z.-Y. Liu, Process Routes of low-Ni Liquefied Natural Gas Tank Steel with Excellent Cryogenic Toughness, Steel Res. Int., 2021, 92, p 2100127.

    Article  CAS  Google Scholar 

  11. C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan, and J.W. Morris Jr., The Microstructure of Lath Martensite in Quenched 9Ni Steel, Acta Mater., 2014, 69, p 372–385.

    Article  ADS  CAS  Google Scholar 

  12. W.X. Zhang, Y.Z. Chen, Y.B. Cong, Y.H. Liu, and F. Liu, On the Austenite Stability of Cryogenic Ni Steels: Microstructural Effects: A Review, J. Mater. Sci., 2021, 56, p 12539–12558.

    Article  ADS  CAS  Google Scholar 

  13. M.A.C. Araujo, J.B. Vogt, and J. Bouquerel, Retained Austenite-Aided Cyclic Plasticity of the Quenched 9Ni Steel, Int. J. Fatigue, 2021, 152, p 106445.

    Article  Google Scholar 

  14. X.T. Deng, X.L. Li, L. Huang, and Z.D. Wang, Retained Austenite Control and Extra-Cryogenic Impact Toughness of Fe-3.0%Mn Low Carbon Steel, Mater. Sci. Forum, 2020, 993, p 520–525.

    Article  Google Scholar 

  15. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, The Effect of Morphology on the Stability of Retained Austenite in a Quenched and Partitioned Steel, Scripta Mater., 2013, 68, p 321–324.

    Article  CAS  Google Scholar 

  16. Y.H. Yang, Q.W. Cai, H.B. Wu, and H. Wang, Formation of Reversed Austenite and Its Effect on Cryogenic Toughness of 9Ni Steel During Two-Phase Region Heat Treatment, Acta Metall. Sin., 2009, 45, p 270–274.

    CAS  Google Scholar 

  17. M. Wang, Z.Y. Liu, and C.G. Li, Correlations of Ni Contents, Formation of Reversed Austenite and Toughness for Ni-Containing Cryogenic Steels, Acta Metall. Sin. (Engl. Lett.), 2017, 30, p 238–249.

    Article  CAS  Google Scholar 

  18. S. Mishra and R.P. Dalai, Effect of Quenching and Partitioning Treatment on Low Carbon Medium Manganese Alloyed Steels-A Short Review, Mater. Today Proc., 2021, 43, p 593–596.

    Article  CAS  Google Scholar 

  19. H. Zhang, X. Ji, D. Ma, M. Tong, and D. Li, Effect of Aging Temperature on the Austenite Reversion and Mechanical Properties of a Fe-10Cr-10Ni Cryogenic Maraging Steel, J. Mater. Res. Technol., 2020, 11, p 98–111.

    Article  Google Scholar 

  20. H. Luo, X. Wang, Z. Liu, and Z. Yang, Influence of Refined Hierarchical Martensitic Microstructures on Yield Strength and Impact Toughness of Ultra-High Strength Stainless Steel, J. Mater. Sci. Technol., 2020, 51, p 130–136.

    Article  CAS  Google Scholar 

  21. Y. Zou, Y.B. Xu, Z.P. Hu, S.Q. Chen, D.T. Han, R.D.K. Misra, and G.Z. Wang, High Strength-Toughness Combination of a Low-Carbon Medium-Manganese Steel Plate with Laminated Microstructure and Retained Austenite, Mater. Sci. Eng. A, 2017, 707, p 270–279.

    Article  CAS  Google Scholar 

  22. W. Li, H. Zhang, H. Fu, J. Zhang, and X. Qi, Internal Friction Study of Mechanism of Bake-Hardening on Low Carbon Steel, Acta Metall. Sin., 2015, 51, p 385–392.

    CAS  Google Scholar 

  23. S. Li, L. Deng, X. Wu, H. Wang, and Y. Min, Low-Frequency Internal Friction Investigating of the Carbide Precipitation in Solid Solution During Tempering in High Alloyed Martensitic Steel, Mater. Sci. Eng. A, 2010, 527, p 6899–6903.

    Article  Google Scholar 

  24. I. Tkalcec and D. Mari, Internal Friction in Martensitic, Ferritic and Bainitic Carbon Steel; Cold Work Effects, Mater. Sci. Eng. A, 2004, 370, p 213–217.

    Article  Google Scholar 

  25. D. Zhang, C. Cui, W. Li, and J. Xu, Hydrogen Diffusion and Hydrogen Embrittlement Failure Behavior of AH36 Marine Steel Subjected to High Heat Input Welding, Steel Res. Int., 2023, 94, p 2200539.

    Article  CAS  Google Scholar 

  26. X. Yuan, W. Li, Q. Pang, C. Zhang, and G. Lu, Study on the Performance and Strain Aging Behavior of Solid-Solution State Low-Carbon Steel, Mater. Sci. Eng. A, 2018, 726, p 282–287.

    Article  CAS  Google Scholar 

  27. X.F. Zhu and L.D. Zhang, Internal Friction and Modulus Associated with Non-Equilibrium Diffusion-Type Phase Transformation in an Al-Zn Alloy, J. Phys. F: Met. Phys., 1988, 18, p L159–L162.

    Article  CAS  Google Scholar 

  28. J. Hu, X. Li, Q. Meng, L. Wang, Y. Li, and W. Xu, Tailoring Retained Austenite and Mechanical Property Improvement in Al-Si-V Containing Medium Mn Steel via Direct Intercritical Rolling, Mater. Sci. Eng. A, 2022, 855, p 143904.

    Article  CAS  Google Scholar 

  29. X.C. Li, J.X. Zhao, S.J. Jia, G.Y. Lu, R.D.K. Misra, Q.Y. Liu, and B. Li, Ultrafine Microstructure Design of High Strength Pipeline Steel for Low Temperature service: the Significant Impact on Toughness, Mater. Lett., 2021, 303, p 130429.

    Article  CAS  Google Scholar 

  30. F. Wang, Q. Sun, H. Ren, N. Cao, X. Song, S. Deng, D. Qian, and M. Wu, A novel Quenching-Electroshocking-Tempering Process for Toughness Improvement by Microstructure Refining and Austenite Stability Tailoring in Aviation Bearing Steel, Mater. Sci. Eng. A, 2022, 854, p 143817.

    Article  CAS  Google Scholar 

  31. C. Zhou, Q.-B. Ye, J. Hu, T. Zhao, X.-H. Gao, and Z.-D. Wang, Ultra-High-Strength Multi-Alloyed Steel with Enhanced Cryogenic Toughness Using Thermally Stable Retained Austenite, Mater. Sci. Eng. A, 2022, 831, p 142356.

    Article  CAS  Google Scholar 

  32. M.C. Niu, K. Yang, J.H. Luan, W. Wang, and Z.B. Jiao, Cu-assisted Austenite Reversion and Enhanced TRIP Effect in Maraging Stainless Steels, J. Mater. Sci. Technol., 2022, 104, p 52–58.

    Article  CAS  Google Scholar 

  33. J. Hu, L.-X. Du, W. Xu, J.-H. Zhai, Y. Dong, Y.-J. Liu, and R.D.K. Misra, Ensuring Combination of Strength, Ductility and Toughness in Medium-Manganese steel Through Optimization of Nano-Scale Metastable Austenite, Mater. Charact., 2018, 136, p 20–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 52074152, 52204346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Hou, J., Zhang, D. et al. Effect of Quenching, Lamellarizing, and Tempering on Reversed Austenite and Cryogenic Toughness of 9Ni Steels. J. of Materi Eng and Perform 33, 2349–2357 (2024). https://doi.org/10.1007/s11665-023-08129-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08129-4

Keywords

Navigation