Skip to main content

Advertisement

Log in

Fabrication of Ti2AlC Compound by Mechanical Alloying and Spark Plasma Sintering and Investigation of Its Cyclic Oxidation Behavior

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the Ti2AlC MAX phase was produced by mechanical alloying (MA) and spark plasma sintering (SPS) of a mixture of Ti, Al and C powders with a molar ratio of 2:1.1:1. The time of the mechanical alloying process and sintering process temperature were selected as variables, and their effect on the properties of resulted samples was investigated. SPS process was performed on the samples at temperatures of 1000, 1100 and 1200 °C and under the pressure of 30 MPa for 20 min. The cyclic oxidation behavior of the samples was then investigated. The density and hardness of the samples were also examined. The results showed that the best specimen had a density of 4.2 gr cm−3 and a hardness of 995 HV. According to the x-ray diffraction patterns, it was found that the Ti2AlC MAX phase has been formed in all samples. The cyclic oxidation process was performed for 50 h on the selected sample at temperatures 1200 and 1350 °C. The results of oxidation test showed that Al2O3 and TiO2 oxide layers formed with good adhesion on the substrate surface. The weight gain equation of the oxidation test was obtained powerfully at temperatures of 1200 and 1350 °C, where the oxidation constant (ko) increased from 8 × 10–4 to 9 × 10–3 mgn h−1, respectively. In this study, the best results were obtained by MA time of 24 h and then SPS process at the temperature of 1200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Radovic and M.W. Barsoum, MAX Phases: Bridging the Gap Between Metals and Ceramics, Am. Ceram. Soc. Bull., 2013, 92, p 20–27.

    CAS  Google Scholar 

  2. M.W. Barsoum, The Mn+1AXn Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 2000, 28, p 201–281.

    Article  CAS  Google Scholar 

  3. Z.M. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56, p 143–166.

    Article  CAS  Google Scholar 

  4. M. Barsoum and M. Radovic, Elastic and Mechanical Properties of the MAX Phases, Ann. Rev. Mater. Res., 2011, 41, p 195–227.

    Article  CAS  Google Scholar 

  5. B. Cui, R. Sa, D.D. Jayaseelan, F. Inam, M.J. Reece, and W.E. Lee, Microstructural Evolution During High-Temperature Oxidation of Spark Plasma Sintered Ti2AlN Ceramics, Acta Mater., 2012, 60, p 1079–1092.

    Article  CAS  Google Scholar 

  6. I.R. Shein and A.L. Ivanovskii, Elastic Properties of Superconducting MAX Phases from First-Principles Calculations, Phys. Status Solidi (b), 2011, 248, p 228–232.

    Article  CAS  Google Scholar 

  7. I. Low, Advances in Science and Technology of Mn+1AXnPhases, Elsevier, Amsterdam, 2012.

    Book  Google Scholar 

  8. B. Anasori, N.C. El’ad, Y. Elraheb, and M.W. Barsoum, On the Oxidation of Ti2GeC in Air, J. Alloys Compd., 2013, 580, p 550–557.

    Article  CAS  Google Scholar 

  9. Z.M. Sun, H. Hashimoto, Z.F. Zhang, S.L. Yang, and S. Tada, Synthesis and Characterization of a Metallic Ceramic Material–Ti3SiC2, Mater. Trans., 2006, 47, p 170–174.

    Article  CAS  Google Scholar 

  10. J.D. Hettinger, S.E. Lofland, P. Finkel, T. Meehan, J. Palma, K. Harrell et al., Electrical Transport, Thermal Transport, and Elastic Properties of M2AlC (M=Ti, Cr, Nb, and V), Phys. Rev. B, 2005, 72(11), p 115120.

    Article  Google Scholar 

  11. J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Mater. Sci. Forum, 2010, 658, p 340–343.

    Article  CAS  Google Scholar 

  12. E. Sadeghi, F. Karimzadeh, and M.H. Abbasi, Thermodynamic Analysis of Ti–Al–C Intermetallics Formation by Mechanical Alloying, J. Alloys Compd., 2013, 576, p 317–323.

    Article  CAS  Google Scholar 

  13. B. Velasco, E. Gordo, L. Hu, M. Radovic, and S.A. Tsipas, Influence of Porosity on Elastic Properties of Ti2AlC and Ti3SiC2 MAX Phase Foams, J. Alloys Compd., 2018, 764, p 24–35.

    Article  CAS  Google Scholar 

  14. T. Fey, M. Stumpf, A. Chmielarz, P. Colombo, P. Greil, and M. Potoczek, Microstructure, Thermal Conductivity and Simulation of Elastic Modulus of MAX-Phase (Ti2AlC) Gel-Cast Foams, J. Eur. Ceram. Soc., 2018, 38(10), p 3424–3432.

    Article  CAS  Google Scholar 

  15. S. Badie, A. Dash, Y. Sohn, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, Synthesis, Sintering and Effect of Surface Roughness on Oxidation of Submicron Ti2AlC Ceramics, J. Am. Ceram. Soc., 2020, 104(4), p 1669–1688.

    Article  Google Scholar 

  16. R. Benitez, W.H. Kan, H. Gao, M. O’Neal, G. Proust, A. Srivastava et al., Mechanical Properties and Microstructure Evolution of Ti2AlC Under Compression in 25–1100 °C Temperature Range, Acta Mater., 2020, 189, p 154–165.

    Article  CAS  Google Scholar 

  17. A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas,and M. Guerioune, Synthesis of High-Purity Polycrystalline MAX Phases in Ti–Al–C SYSTEM THROUGH MECHANICally Activated Self-propagating High-temperature Synthesis, J. Eur. Ceram. Soc., 2010, 30(4), p 1049–1057.

    Article  CAS  Google Scholar 

  18. M.W. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy, and M. Ali, Oxidation of Tin+1AlXn (n={1 3} and X= C, N): II. Experimental Results, J. Electrochem. Soc., 2001, 148(8), p C551.

    Article  CAS  Google Scholar 

  19. W. Yu, V. Mauchamp, T. Cabioc’h, D. Magne, L. Gence, L. Piraux et al., Solid Solution Effects in the Ti2Al(CxNy) MAX Phases: Synthesis, Microstructure, Electronic Structure and Transport Properties, Acta Mater., 2014, 80, p 421–434.

    Article  CAS  Google Scholar 

  20. Y. Du, J.-X. Liu, Y. Gu, X.-G. Wang, F. Xu, and G.-J. Zhang, Anisotropic Corrosion of Ti2AlC and Ti3AlC2 in Supercritical Water at 500 °C, Ceram. Int., 2017, 43(9), p 7166–7171.

    Article  CAS  Google Scholar 

  21. F. Wang, Q. Su, M. Nastasi, M.A. Kirk, M. Li, and B. Cui, Evolution of Irradiation Defects in Ti2AlC Ceramics During Heavy Ion Irradiation, Ceram. Int., 2018, 44(12), p 14686–14692.

    Article  CAS  Google Scholar 

  22. Y. Li, G. Zhao, Y. Qian, J. Xu, and M. Li, Deposition and Characterization of Phase-Pure Ti2AlC and Ti3AlC2 Coatings by DC Magnetron Sputtering with Cost-Effective Targets, Vacuum, 2018, 153, p 62–69.

    Article  CAS  Google Scholar 

  23. W. Wang, M. Sokol, S. Kota, and M. Barsoum, Reaction Paths and Microstructures of Nickel and Ti2AlC Mixtures Reacted in the 1050–1350 °C TEMPERATURE RANGE, J. Alloys Compd., 2020, 828, p 154193.

    Article  CAS  Google Scholar 

  24. X. Li, X. Xie, J. Gonzalez-Julian, J. Malzbender, and R. Yang, Mechanical and Oxidation Behavior of Textured Ti2AlC and Ti3AlC2 MAX Phase Materials, J. Eur. Ceram. Soc., 2020, 40(15), p 5258–5271.

    Article  CAS  Google Scholar 

  25. W. Yu, M. Vallet, B. Levraut, V. Gauthier-Brunet, and S. Dubois, Oxidation Mechanisms in Bulk Ti2AlC: Influence of The Grain Size, J. Eur. Ceram. Soc., 2020, 40(5), p 1820–1828.

    Article  CAS  Google Scholar 

  26. B. Mei, Z. Weibing, J. Zhu, and X. Hong, Synthesis of High-Purity Ti2AlC by Spark Plasma Sintering (SPS) of the Elemental Powders, J. Mater. Sci., 2004, 39, p 1471–1472.

    Article  CAS  Google Scholar 

  27. W.B. Zhou, B.C. Mei, J.Q. Zhu, and X.L. Hong, Rapid Synthesis of Ti2AlC by Spark Plasma Sintering Technique, Mater. Lett., 2005, 59(1), p 131–134.

    Article  CAS  Google Scholar 

  28. Y.L. Yue and H.T. Wu, Fabrication of Ti2AlC/TiAl Composites with the Addition of Niobium by Spark Plasma Sintering, Key Eng. Mater., 2008, 368–372, p 1004–1006.

    Article  Google Scholar 

  29. S. Kulkarni and A. Datye, Synthesis of Ti2AlC by Spark Plasma Sintering of TiAl–Carbon Nanotube Powder Mixture, J. Alloys Compd., 2010, 490, p 155–159.

    Article  CAS  Google Scholar 

  30. Y.L. Chen, X. Zhu, P. Lu, Z. Li, C. Zeng, and M. Yan, Ti2AlC/TiC Functionally Graded Material Fabricated by SPS, Appl. Mech. Mater., 2014, 543–547, p 3869–3873.

    Article  Google Scholar 

  31. G.-H. Jeong, G.-R. Baek, T.F. Zhang, K. Kim, K. Kim, H. Shin et al., MAX-Phase Ti2AlC Ceramics: Syntheses, Properties and Feasibility of Applications in Micro Electrical Discharge Machining, J. Ceram. Process. Res., 2016, 17, p 1116–1122.

    Google Scholar 

  32. K. Kozak, A. Dosi, G. Antou, N. Pradeilles, and T. Chotard, Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC Ceramics Elaborated by Spark Plasma Sintering Using Ultrasonic Means: Characterization of Thermomechanical Behavior of Ti3SiC2 and Ti2AlC, Adv. Eng. Mater., 2016, 18, p 1952–1957.

    Article  CAS  Google Scholar 

  33. R. Benitez, H. Gao, M. O’Neal, P. Lovelace, G. Proust, and M. Radovic, Effects of Microstructure on the Mechanical Properties of Ti2AlC in Compression, Acta Mater., 2018, 143, p 130–140.

    Article  CAS  Google Scholar 

  34. L. Boatemaa, M. Bosch, A.-S. Farle, G. Bei, S. Zwaag, and W.G. Sloof, Autonomous High Temperature Healing of Surface Cracks in Al2O3 Containing Ti2AlC Particles, J. Am. Ceram. Soc., 2018, 101, p 5684–5693.

    Article  CAS  Google Scholar 

  35. Y. Wada, N. Sekido, T. Ohmura, and K. Yoshimi, Deformation Microstructure Developed by Nanoindentation of a MAX Phase Ti2AlC, Mater. Trans., 2018, 59, p 771–778.

    Article  Google Scholar 

  36. C. Lu, K. Piven, Q. Qi, J. Zhang, G. Hug, and A. Jankowiak, Substitution Behavior of Si Atoms in the Ti2AlC Ceramics, Acta Mater., 2018, 144, p 543–551.

    Article  CAS  Google Scholar 

  37. T. Thomas, C. Zhang, A. Sahu, P. Nautiyal, A. Loganathan, T. Laha et al., Effect of Graphene Reinforcement on the Mechanical Properties of Ti2AlC Ceramic Fabricated by Spark Plasma Sintering, Mater. Sci. Eng. A, 2018, 728, p 45–53.

    Article  CAS  Google Scholar 

  38. Z. Zhan, Y. Chen, M. Radovic, and A. Srivastava, Non-classical Crystallographic Slip in a Ternary Carbide – Ti2AlC, Mater. Res. Lett., 2020, 8(7), p 275–281.

    Article  CAS  Google Scholar 

  39. A. Koniuszewska and K. Naplocha, Microwave Assisted Self-propagating High-temperature Synthesis of Ti2AlC MAX Phase, Compos. Theory Pract., 2016, 16, p 109–112.

    CAS  Google Scholar 

  40. W. Chen, J. Tang, X. Shi, N. Ye, Z. Yue, and X. Lin, Synthesis and Formation Mechanism of High-Purity Ti3AlC2 Powders by Microwave Sintering, Int. J. Appl. Ceram. Technol., 2019, 17, p 778–789.

    Article  Google Scholar 

  41. Smialek J. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxidation of Metals. 2015;83.

  42. J.L. Smialek, Environmental Resistance of a Ti2AlC-type MAX Phase in a High Pressure Burner Rig, J. Eur. Ceram. Soc., 2017, 37(1), p 23–34.

    Article  CAS  Google Scholar 

  43. J.L. Smialek, B.J. Harder, and A. Garg, Oxidative Durability of TBCs on Ti2AlC MAX Phase Substrates, Surf. Coat. Technol., 2016, 285, p 77–86.

    Article  CAS  Google Scholar 

  44. Z. Zhang, S.H. Lim, D.M.Y. Lai, S.Y. Tan, X.Q. Koh, J. Chai et al., Feature Article, J. Eur. Ceram. Soc., 2017, 37(1), p 43–51.

    Article  Google Scholar 

  45. C. Tang, M. Steinbrück, M. Große, T. Bergfeldt, and H.J. Seifert, Oxidation Behavior of Ti2AlC in the Temperature Range of 1400 °C–1600 °C in Steam, J. Nucl. Mater., 2017, 490, p 130–142.

    Article  CAS  Google Scholar 

  46. A. Donchev, M. Schütze, E. Ström, and M. Galetz, Oxidation Behaviour of the MAX-Phases Ti2AlC and (Ti, Nb)2AlC at Elevated Temperatures with and Without Fluorine Treatment, J. Eur. Ceram. Soc., 2019, 39(15), p 4595–4601.

    Article  CAS  Google Scholar 

  47. L. Smialek, Relative Ti2AlC Scale Volatility Under 1300 °C Combustion Conditions, Coatings, 2020, 10, p 142.

    Article  CAS  Google Scholar 

  48. X. Wang and Y. Zhou, High-Temperature Oxidation Behavior of Ti2AlC in Air, Oxid. Met., 2003, 59(3–4), p 303–320.

    Article  CAS  Google Scholar 

  49. J. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K. Park, M. Brady, M. Radovic, T. El-Raghy, and Y. Sohn, Microstructure and Residual Stress of Alumina Scale Formed on Ti2AlC at High Temperature in Air, Oxid. Met., 2007, 68, p 97–111.

    Article  CAS  Google Scholar 

  50. W. Zhou, K. Li, J. Zhu, S. Tian, and D.-M. Zhu, Low-Temperature Synthesis of High-Purity Ti2AlC Powder by Microwave Sintering, Micro Nano Lett., 2018, 13, p 798–800.

    Article  CAS  Google Scholar 

  51. M. Sundberg, G. Malmqvist, A. Magnusson, and T. El-Raghy, Alumina Forming High Temperature Silicides and Carbides, Ceram. Int., 2004, 30, p 1899–1904.

    Article  CAS  Google Scholar 

  52. Z.J. Lin, M.J. Zhuo, Y. Zhou, M. Li, and J. Wang, Microstructural Characterization of Layered Ternary Ti2AlC, Acta Mater., 2006, 54, p 1009–1015.

    Article  CAS  Google Scholar 

  53. D.J. Tallman, B. Anasori, and M.W. Barsoum, A Critical Review of the Oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air, Mater. Res. Lett., 2013, 1, p 115–125.

    Article  CAS  Google Scholar 

  54. M. Munro, Evaluated Material Properties for a Sintered Alpha-Alumina, J. Am. Ceram. Soc., 1997, 80, p 1919–1928.

    Article  CAS  Google Scholar 

  55. A. Li, C. Hu, M. Li, and Y. Zhou, Joining of Ti–Al–C Ceramics by Oxidation at Low Oxygen Partial Pressure, J. Eur. Ceram. Soc., 2009, 29, p 2619–2625.

    Article  CAS  Google Scholar 

  56. T. Thomas, Fabrication Techniques to Produce Micro and Macro Porous MAX-Phase Ti2AlC Ceramic (University of Bath, 2015.

  57. J.F. Zhu, G.Q. Qi, F. Wang, and H.B. Yang, High Purity Ti2AlC Powder Prepared by a Novel Method, Materials Science Forum, Trans Tech Publ, Wollerau, 2010, p 340–343

    Google Scholar 

  58. A. Attaei, Mechanical Alloying and Mechanical Activation a Technology for Processing of Nanomaterials (University of Tehran, 2007)

  59. M. Rafiei, M. Salehi, M. Shamanian, and A. Motallebzadeh, Preparation and Oxidation Behavior of B4C–Ni and B4C–TiB2–TiC–Ni Composite Coatings Produced by an HVOF Process, Ceram. Int., 2014, 40(8), p 13599–13609.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Ebrahimzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejat, B., Ebrahimzadeh, I. & Rafiei, M. Fabrication of Ti2AlC Compound by Mechanical Alloying and Spark Plasma Sintering and Investigation of Its Cyclic Oxidation Behavior. J. of Materi Eng and Perform 32, 8846–8857 (2023). https://doi.org/10.1007/s11665-023-08044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08044-8

Keywords

Navigation