Skip to main content
Log in

Study of the Effect of Ultrasonic Vibration on Nickel-Based Coating by Electrical Discharge Machining

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Surface modification of ASTM 1045 carbon steel using ultrasonic vibration-assisted automatic electric discharge machining (UAEDM) in gaseous media was carried out, aiming to investigate the effect mechanism of ultrasonic vibration on EDM coating by analyzing the microstructure and mechanical properties of the coating. Under the same voltage and duty cycle conditions, electric discharge machining (EDM) coating and UAEDM coating were fabricated using a self-developed ultrasonic vibration-assisted EDM platform. Surface and cross-sectional microstructure, XRD phases identification, surface roughness and its mechanical properties were analyzed. The results show that ultrasonic vibration-assisted deposition can effectively eliminate surface cracks, diminish surface roughness and porosity. Meanwhile, analysis of the mechanical properties of the comparative EDM coatings demonstrated that the hardness and wear resistance of the UAEDM coatings were significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data, models, and materials generated or used during the study appear in the submitted article.

References

  1. M. Salmaliyan, F. Malek Ghaeni, and M. Ebrahimnia, Effect of Electro Spark Deposition Process Parameters on WC-Co Coating on H13 Steel, Surf. Coat. Technol., 2017, 321, p 81–89.

    Article  CAS  Google Scholar 

  2. H.C. Tsai, B.H. Yan, and F.Y. Huang, EDM Performance of Cr/Cu-Based Composite Electrodes, Int. J. Mach. Tools Manuf., 2003, 43(3), p 245–252.

    Article  Google Scholar 

  3. P. Mandal and S.C. Mondal, Surface Characteristics of Mild Steel Using EDM with Cu-MWCNT Composite Electrode, Mater. Manuf. Process., 2019, 34(12), p 1326–1332.

    Article  CAS  Google Scholar 

  4. N. Ahmed, J.W. Murray, T. Yuzawa, T. Kurokawa, T. Nakagawa, S. Sarugaku, D. Saito, and A.T. Clare, Residual Stress in Electrical Discharge Coatings, Surf. Coat. Technol., 2021, 416, p 127156.

    Article  CAS  Google Scholar 

  5. J.W. Murray, N. Ahmed, T. Yuzawa, T. Nakagawa, S. Sarugaku, D. Saito, and A.T. Clare, Dry-Sliding Wear and Hardness of Thick Electrical Discharge Coatings and Laser Clads, Tribol. Int., 2020, 150, p 106392.

    Article  CAS  Google Scholar 

  6. Z.Y. Zeng, H.Q. Xiao, X.H. Jie, and Y.M. Zhang, Friction and Wear Behaviors of TiCN Coating Based on Electrical Discharge Coating, Trans. Nonferrous Metals Soc. China, 2015, 25(11), p 3716–3722.

    Article  CAS  Google Scholar 

  7. H. Aghajani, E. Hadavand, N.S. Peighambardoust, and S. Khameneh-asl, Electro Spark Deposition of WC-TiC-Co-Ni Cermet Coatings on St52 Steel, Surf. Interfaces, 2020, 18, p 100392.

    Article  CAS  Google Scholar 

  8. J. Padgurskas, R. Kreivaitis, R. Rukuiža, V. Mihailov, V. Agafii, R. Kriūkienė, and A. Baltušnikas, Tribological Properties of Coatings Obtained by Electro-Spark Alloying C45 Steel Surfaces, Surf. Coat. Technol., 2017, 311, p 90–97.

    Article  CAS  Google Scholar 

  9. H.P. Tsui, P.H. Lee, C.C. Yeh, and J.C. Hung, Ultrasonic Vibration-Assisted Electrical Discharge Machining on Fe-Based Metallic Glass by Adding Conductive Powder, Procedia CIRP, 2020, 95, p 425–430.

    Article  Google Scholar 

  10. J. Simao, H.G. Lee, D.K. Aspinwall, R.C. Dewes, and E.M. Aspinwall, Workpiece Surface Modification Using Electrical Discharge Machining, Int. J. Mach. Tools Manuf., 2003, 43(2), p 121–128.

    Article  Google Scholar 

  11. A. Yadav, S. Mohanty, A. Nag, A.R. Dixit, and A.K. Das, A Concise Review on Improvement of Tribological Properties by Electrical Discharge Coating Process, AIP Conf. Proc., 2020, 2273, p 050009.

    Google Scholar 

  12. S. Kumar, R. Singh, T.P. Singh, and B.L. Sethi, Surface Modification by Electrical Discharge Machining: A Review, J. Mater. Process. Technol., 2009, 209(8), p 3675–3687.

    Article  CAS  Google Scholar 

  13. P. Mandal and S.C. Mondal, Investigation on the Performance of Copper-Coated 6061 Aluminium Alloy Electrode in Electric Discharge Machining, Smart Innov. Syst. Technol., 2019, 134, p 345–355.

    Article  Google Scholar 

  14. J.W. Murray, R.B. Cook, N. Senin, S.J. Algodi, and A.T. Clare, Defect-Free TiC/Si Multi-Layer Electrical Discharge Coatings, Mater. Des., 2018, 155, p 352–365.

    Article  CAS  Google Scholar 

  15. I. Arun, C. Yuvaraj, P. Jyothibabu, and G.C. Sekhar-Reddy, Influence of Silica on Microstructural Modification of Electrical Discharge Composite Coating and Its Wear Performance, Silicon, 2020, 12(10), p 2375–2386.

    Article  CAS  Google Scholar 

  16. H. Zhao, C. Gao, X. Yu-Wu, B. Xu, Y. Jun-Lu, and L. Kuan-Zhu, A Novel Method to Fabricate Composite Coatings via Ultrasonic-Assisted Electro-Spark Powder Deposition, Ceram. Int., 2019, 45(17), p 22528–22537.

    Article  CAS  Google Scholar 

  17. Y.C. Lin, B.H. Yan, and Y.S. Chang, Machining Characteristics of Titanium Alloy (Ti-6Al-4V) Using a Combination Process of EDM with USM, J. Mater. Process. Technol., 2000, 104(3), p 171–177.

    Article  Google Scholar 

  18. J.V. Rajesh and A. Giridharan, A Study on Influence of Peak Current and Ultrasonic Vibration during Powder Mixed Electrical Discharge Machining Process, IOP Conf. Ser. Mater. Sci. Eng., 2020, 912, p 032056.

    Article  CAS  Google Scholar 

  19. V. Srivastava and P.M. Pandey, Effect of Process Parameters on the Performance of EDM Process with Ultrasonic Assisted Cryogenically Cooled Electrode, J. Manuf. Process., 2012, 14(3), p 393–402.

    Article  Google Scholar 

  20. B.C. Khatri, P. Rathod, and J.B. Valaki, Ultrasonic Vibration-Assisted Electric Discharge Machining: A Research Review, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2016, 230(2), p 319–330.

    Article  Google Scholar 

  21. Y. Wang, Z. Liu, J. Shi, Y. Dong, S. Yang, X. Zhang, and B. Lin, Analysis of Material Removal and Surface Generation Mechanism of Ultrasonic Vibration-Assisted EDM, Int. J. Adv. Manuf. Technol., 2020, 110(1–2), p 177–189.

    Article  CAS  Google Scholar 

  22. W. Kong and X. Zhu, The Experimental Study on Horizontal Ultrasonic Electron Discharge Machining, J. Phys. Conf. Ser., 2019, 1176, p 062038.

    Article  CAS  Google Scholar 

  23. G. Huang, W. Hou, J. Li, and Y. Shen, Development of Surface Composite Based on Al-Cu System by Friction Stir Processing: Evaluation of Microstructure, Formation Mechanism and Wear Behavior, Surf. Coat. Technol., 2018, 344, p 30–42.

    Article  CAS  Google Scholar 

  24. W. Hou, Y. Ding, G. Huang, N. Huda, L.H.A. Shah, Z. Piao, Y. Shen, Z. Shen, and A. Gerlich, The Role of Pin Eccentricity in Friction Stir Welding of Al-Mg-Si Alloy Sheets: Microstructural Evolution and Mechanical Properties, Int. J. Adv. Manuf. Technol., 2022, 121, p 7661–7675.

    Article  Google Scholar 

  25. Y. Liu, D. Wang, C. Deng, L. Huo, L. Wang, and R. Fang, Novel Method to Fabricate Ti-Al Intermetallic Compound Coatings on Ti-6Al-4V Alloy by Combined Ultrasonic Impact Treatment and Electrospark Deposition, J. Alloys Compd., 2015, 628, p 208–212.

    Article  CAS  Google Scholar 

  26. N. Ahmed, J.W. Murray, T. Yuzawa, T. Nakagawa, S. Sarugaku, D. Saito, P.D. Brown, and A.T. Clare, Formation of Thick Electrical Discharge Coatings, J. Mater. Process. Technol., 2020, 285, p 116801.

    Article  CAS  Google Scholar 

  27. X. Yue, X. Yang, Q. Li, and X. Li, Novel Methods for High-Speed Observation of Material Removal and Molten Pool Movement in EDM, Precis. Eng., 2020, 66, p 295–305.

    Article  Google Scholar 

  28. R. Tyagi, A.K. Das, and A. Mandal, Formation of Superhydrophobic Surface with Enhanced Hardness and Wear Resistance by Electrical Discharge Coating Process, Tribol. Int., 2021, 157, p 106897.

    Article  CAS  Google Scholar 

  29. Y. Zhang, Y. Liu, R. Ji, B. Cai, and H. Li, Influence of Dielectric Type on Porosity Formation on Electrical Discharge Machined Surfaces, Metall. Mater. Trans. B, 2012, 43, p 946–953.

    Article  CAS  Google Scholar 

  30. N. Sabyrov, M.P. Jahan, A. Bilal, and A. Perveen, Ultrasonic Vibration Assisted Electro-Discharge Machining (EDM)-an Overview, Materials, 2019, 12(3), p 522.

    Article  CAS  Google Scholar 

  31. S. Pedroso da Silva, A.M. Abrão, E. Rodrigues da Silva, and M.A. Câmara, Surface Modification of AISI H13 Steel by Die-Sinking Electrical Discharge Machining and TiAlN Coating: A Promising Hybrid Technique to Improve Wear Resistance, Wear, 2020, 462–463, p 203509.

    Article  Google Scholar 

  32. H. Liang, D. Qiao, J. Miao, Z. Cao, H. Jiang, and T. Wang, Anomalous Microstructure and Tribological Evaluation of AlCrFeNiW0.2Ti0.5 High-Entropy Alloy Coating Manufactured by Laser Cladding in Seawater, J. Mater. Sci. Technol., 2021, 85, p 224–234.

    Article  CAS  Google Scholar 

  33. H. Zhao, C. Gao, C. Guo, B. Xu, X.-Y. Wu, and J.-G. Lei, In-Situ TiC-Reinforced Ni-Based Composite Coatings Fabricated by Ultrasonic-Assisted Electrospark Powder Deposition, J. Asian Ceram. Soc., 2022, 24, p 1–13.

    Google Scholar 

  34. S. Suresh Kumar, M. Uthayakumar, S. Thirumalai Kumaran, T. Varol, and A. Canakci, Investigating the Surface Integrity of Aluminium Based Composites Machined by EDM, Def. Technol., 2019, 15(3), p 338–343.

    Article  Google Scholar 

  35. C.J. Dong, J.H. Zhang, and X.C. Song, Research on the Performance of Ultrasonic Vibration Assisted Electrical Discharge Surface Modification Layer, Adv. Mater. Res., 2010, 171–172, p 408–411.

    Article  Google Scholar 

Download references

Funding

This article was financially supported by National Natural Science Foundation of China (NSFC) (52275217, 52175194, 52105215, 52075047), Zhejiang Provincial Natural Science Foundation of China (LR23E050002), Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. RF-A2019008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyu Piao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, W., Xu, W., Zhou, Z. et al. Study of the Effect of Ultrasonic Vibration on Nickel-Based Coating by Electrical Discharge Machining. J. of Materi Eng and Perform 32, 9418–9427 (2023). https://doi.org/10.1007/s11665-022-07786-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07786-1

Keywords

Navigation