Skip to main content
Log in

Effect of Pre-treatment and Duration of Pulse Plasma Nitriding on Duplex Plasma Treatment by Physical Vapor Deposition of TiN on AISI D2 Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Surface treatments have been vastly used in the manufacturing industry to improve the life of tool materials. Plasma nitriding (PN) is widely used because it allows controlling the surface microstructure mainly by the formation of a compound layer and N2 diffusion layer. Duplex surface treatments are new solutions for tools, combining the advantages of PN and physical vapor deposition (PVD) coatings by magnetron sputtering, looking for still better performance while at service. This investigation is an attempt to study the surface properties of AISI D2 steel with two different substrate conditions (as-received and heat-treated), tailored by duplex plasma treatment with a variation of PN duration (6, 12 and 24 h) followed by PVD of TiN coating. Surface properties and phase identification of the duplex-treated samples have been made by SEM and XRD. Other properties such as surface roughness, microhardness and wear resistance were evaluated by a surface profilometer, a Vickers microhardness tester and a ball-on-disk setup, respectively. The results indicated higher microhardness and wear resistance values for every heat-treated surface compared with the as-received samples. PN 6 h duplex treated had the highest microhardness and wear resistance properties among all. It is remarkable that the initial surface condition, N2 diffusion layer and compound layer play a decisive role in enhancing the load-carrying and wear resistance capability of duplex-treated samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data have been obtained from the experiments and correlation, which are already in the article.]

References

  1. K.T. Cho, K. Song, S.H. Oh, Y.-K. Lee, and W.B. Lee, Enhanced Surface Hardening of AISI D2 Steel by Atomic Attrition During Ion Nitriding, Surf. Coat. Technol., 2014, 251, p 115–121. https://doi.org/10.1016/j.surfcoat.2014.04.011

    Article  CAS  Google Scholar 

  2. G. Roberts, G. Krauss, and R. Kennedy, Tool Steels, ASM International, OH, 1998.

    Book  Google Scholar 

  3. B.-J. Lv, S. Wang, T.-W. Xu, and F. Guo, Effects of Minor Nd and Er Additions on the Precipitation Evolution and Dynamic Recrystallization Behavior of Mg-6.0Zn-0.5Mn Alloy, J. Magnes. Alloys, 2020 https://doi.org/10.1016/j.jma.2020.06.018

    Article  Google Scholar 

  4. L. Bourithis, G.D. Papadimitriou, and J. Sideris, Comparison of Wear Properties of Tool Steels AISI D2 and O1 with the Same Hardness, Tribol. Int., 2006, 39(6), p 479–489. https://doi.org/10.1016/j.triboint.2005.03.005

    Article  CAS  Google Scholar 

  5. J.C. Díaz-Guillén, M. Naeem, H.M. Hdz-García, J.L. Acevedo-Davila, M.R. Díaz-Guillén, M.A. Khan, J. Iqbal, and A.I. Mtz-Enriquez, Duplex Plasma Treatment of AISI D2 tool steel by Combining Plasma Nitriding (with and Without White Layer) and Post-oxidation, Surf. Coat. Technol., 2020, 385, p 125420. https://doi.org/10.1016/j.surfcoat.2020.125420

    Article  CAS  Google Scholar 

  6. J. D’Haen, C. Quaeyhaegens, L.M. Stals, and M. Van Stappen, Interface Study of Physical Vapour Deposition TiN Coatings on Plasma-Nitrided Steels, Surf. Coat. Technol., 1993, 61(1–3), p 194–200. https://doi.org/10.1016/0257-8972(93)90225-d

    Article  Google Scholar 

  7. B. Edenhofer, Physical and Metallurgical Aspects of Ion-Nitriding–Part 1, Heat. Treat. Met., 1974, 1, p 23–28.

    CAS  Google Scholar 

  8. Y. Sun and T. Bell, Plasma Surface Engineering of Low Alloy Steel, Mater. Sci. Eng. A, 1991, 140, p 419–434. https://doi.org/10.1016/0921-5093(91)90458-y

    Article  Google Scholar 

  9. J. Yang, Y. Liu, Z. Ye, D. Yang, and S. He, Microstructural and Tribological Characterization of Plasma- and Gas-Nitrided 2Cr13 Steel in Vacuum, Mater. Des., 2011, 32(2), p 808–814. https://doi.org/10.1016/j.matdes.2010.07.022

    Article  CAS  Google Scholar 

  10. M.U. Devi, T. Chakraborty, and O. Mohanty, Wear Behaviour of Plasma Nitrided Tool Steels, Surf. Coat. Technol., 1999, 116–119, p 212–221. https://doi.org/10.1016/s0257-8972(99)00118-8

    Article  Google Scholar 

  11. M.B. Karamiş, An Investigation of the Properties and Wear Behaviour of Plasma-Nitrided Hot-Working Steel (H13), Wear, 1991, 150(1–2), p 331–342. https://doi.org/10.1016/0043-1648(91)90327-q

    Article  Google Scholar 

  12. M. Karakan, A. Alsaran, and A. Çelik, Effects of Various Gas Mixtures on Plasma Nitriding Behavior of AISI 5140 Steel, Mater. Charact., 2002, 49(3), p 241–246. https://doi.org/10.1016/s1044-5803(03)00010-x

    Article  CAS  Google Scholar 

  13. A.F. Rousseau, J.G. Partridge, E.L.H. Mayes, J.T. Toton, M. Kracica, D.G. McCulloch, and E.D. Doyle, Microstructural and Tribological Characterisation of a nitriding/TiAlN PVD Coating Duplex Treatment Applied to M2 High Speed Steel tools, Surf. Coat. Technol., 2015, 272, p 403–408. https://doi.org/10.1016/j.surfcoat.2015.03.034

    Article  CAS  Google Scholar 

  14. B. Podgornik, S. Hogmark, O. Sandberg, and V. Leskovsek, Wear Resistance and Anti-Sticking Properties of Duplex Treated Forming Tool Steel, Wear, 2003, 254(11), p 1113–1121. https://doi.org/10.1016/s0043-1648(03)00322-3

    Article  CAS  Google Scholar 

  15. D. Braga, J.P. Dias, and A. Cavaleiro, Duplex treatment: W-Ti-N Sputtered Coatings on Pre-nitrided Low and High Alloy Steels, Surf. Coat. Technol., 2006, 200(16–17), p 4861–4869. https://doi.org/10.1016/j.surfcoat.2005.04.056

    Article  CAS  Google Scholar 

  16. M. Stoiber, J. Wagner, C. Mitterer, K. Gammer, H. Hutter, C. Lugmair, and R. Kullmer, Plasma-Assisted Pre-treatment for PACVD TiN Coatings on Tool Steel, Surf. Coat. Technol., 2003, 174–175, p 687–693. https://doi.org/10.1016/s0257-8972(03)00353-0

    Article  Google Scholar 

  17. M.H. Staia, Y. Pérez-Delgado, C. Sanchez, A. Castro, E. Le Bourhis, and E.S. Puchi-Cabrera, Hardness Properties and High-Temperature wear Behavior of Nitrided AISI D2 Tool Steel, Prior and After PAPVD Coating, Wear, 2009, 267(9–10), p 1452–1461. https://doi.org/10.1016/j.wear.2009.03.045

    Article  CAS  Google Scholar 

  18. B. Navinšek, P. Panjan, I. Urankar, P. Cvahte, and F. Gorenjak, Improvement of Hot-Working Processes with PVD Coatings and Duplex Treatment, Surf. Coat. Technol., 2001, 142–144, p 1148–1154. https://doi.org/10.1016/s0257-8972(01)01098-2

    Article  Google Scholar 

  19. L.H.P. de Abreu et al., The Effect of Cathodic Cage Plasma TiN Deposition on Surface Properties of Conventional Plasma Nitrided AISI-M2 Steel, Metals, 2022, 12(6), p 961. https://doi.org/10.3390/met12060961

    Article  CAS  Google Scholar 

  20. M. Naeem et al., Combined Plasma Treatment of AISI-1045 Steel by Hastelloy Deposition and Plasma Nitriding, J. Build. Eng., 2022, 47, p 103882. https://doi.org/10.1016/j.jobe.2021.103882

    Article  Google Scholar 

  21. M. Naeem et al., Wear and Corrosion Studies of Duplex Surface-treated AISI-304 Steel by a Combination of Cathodic Cage Plasma Nitriding and PVD-TiN Coating, Ceram. Int., 2022, 48(15), p 21514–21523. https://doi.org/10.1016/j.ceramint.2022.04.115

    Article  CAS  Google Scholar 

  22. I.O. Nascimento et al., Comparative Study of Structural and Stoichiometric Properties of Titanium Nitride Films Deposited by Cathodic Cage Plasma Deposition and Magnetron Sputtering, Eur. Phys. J. Plus, 2022 https://doi.org/10.1140/epjp/s13360-022-02543-8

    Article  Google Scholar 

  23. M.G.C. Barbosa et al., Surface Modification of Tool Steel by Cathodic cage TiN Deposition, Surf. Eng., 2019, 37(3), p 334–342. https://doi.org/10.1080/02670844.2019.1663011

    Article  CAS  Google Scholar 

  24. T. Bell, H. Dong, and Y. Sun, Realising the Potential of Duplex Surface Engineering, Tribol. Int., 1998, 31(1–3), p 127–137. https://doi.org/10.1016/s0301-679x(98)00015-2

    Article  CAS  Google Scholar 

  25. M.G. Faga and L. Settineri, Innovative Anti-Wear Coatings on Cutting Tools for Wood Machining, Surf. Coat. Technol., 2006, 201(6), p 3002–3007. https://doi.org/10.1016/j.surfcoat.2006.06.013

    Article  CAS  Google Scholar 

  26. P. Jurˇci and M. Hudáková, Wear Mechanism of Duplex-Coated P/M Vanadis 6 Ledeburitic Steel, Mater. Tehnol., 2008, 42, p 197–202.

    Google Scholar 

  27. A. Mohammadnejad, A. Bahrami, M. Goli, H. Dehbashi Nia, and P. Taheri, Wear Induced Failure of Automotive Disc Brakes—A Case Study, Materials, 2019, 12(24), p 4214. https://doi.org/10.3390/ma12244214

    Article  CAS  Google Scholar 

  28. H. Xu, T. He, N. Zhong, B. Zhao, and Z. Liu, Transient Thermomechanical Analysis of Micro Cylindrical Asperity Sliding Contact of SnSbCu Alloy, Tribol. Int., 2022, 167, p 107362. https://doi.org/10.1016/j.triboint.2021.107362

    Article  CAS  Google Scholar 

  29. K. Höck, H.-J. Spies, B. Larisch, G. Leonhardt, and B. Buecken, Wear Resistance of Prenitrided Hardcoated Steels for Tools and Machine Components, Surf. Coat. Technol., 1997, 88(1–3), p 44–49. https://doi.org/10.1016/s0257-8972(96)02914-3

    Article  Google Scholar 

  30. J.C.A. Batista, Promising Duplex Coatings for Tribological Applications at Elevated Temperatures Tese de Doutorado, UFMG, Belo Horizonte, 2001.

    Google Scholar 

  31. S. Ma, Y. Li, and K. Xu, The Composite of Nitrided steel of H13 and TiN Coatings by Plasma Duplex Treatment and the Effect of Pre-nitriding, Surf. Coat. Technol., 2001, 137(2–3), p 116–121. https://doi.org/10.1016/s0257-8972(00)01073-2

    Article  CAS  Google Scholar 

  32. A.R. Franco Júnior, Obtenção de Revestimentos Dúplex Por Nitretação a Plasma e PVD-TiN em Aços Ferramenta AISI D2 e AISI H13. https://doi.org/10.11606/t.3.2003.tde-02102003-114623.

  33. M.M. Kumari, S. Natarajan, J. Alphonsa, and S. Mukherjee, Dry Sliding Wear Behaviour of Plasma Nitrocarburised AISI 304 Stainless Steel Using Response Surface Methodology, Surf. Eng., 2010, 26(3), p 191–198. https://doi.org/10.1179/174329409x439041

    Article  CAS  Google Scholar 

  34. K. Das, J. Alphonsa, M. Ghosh, J. Ghanshyam, R. Rane, and S. Mukherjee, Influence of Pretreatment on Surface Behavior of Duplex Plasma Treated AISI H13 Tool Steel, Surf. Interfaces, 2017, 8, p 206–213. https://doi.org/10.1016/j.surfin.2017.06.009

    Article  CAS  Google Scholar 

  35. D. Kovács, I. Quintana, and J. Dobránszky, Effects of Different Variants of Plasma Nitriding on the Properties of the Nitrided Layer, J. Mater. Eng. Perform., 2019, 28(9), p 5485–5493. https://doi.org/10.1007/s11665-019-04292-9

    Article  CAS  Google Scholar 

  36. L.F. Zagonel, J. Bettini, R.L.O. Basso, P. Paredez, H. Pinto, C.M. Lepienski, and F. Alvarez, Nanosized precipitates in H13 Tool Steel Low Temperature Plasma Nitriding, Surf. Coat. Technol., 2012, 207, p 72–78. https://doi.org/10.1016/j.surfcoat.2012.05.081

    Article  Google Scholar 

  37. P. Saikia, A. Joseph, R. Rane, B. Saikia, and S. Mukherjee, Role of Substrate and Deposition Conditions on the Texture Evolution of Titanium Nitride thin Film on Bare and Plasma-Nitrided High-Speed Steel, J. Theoret. Appl. Phys., 2013, 7(1), p 66. https://doi.org/10.1186/2251-7235-7-66

    Article  Google Scholar 

  38. J.A. Rivera-Márquez, C.M. Bautista-Rodríguez, C.M. Herrera, E.R. Rosas, O.Z. Angel, and O. TziliPozos, Effect of Surface Morphology of ZnO Electrodeposited on Photocatalytic Oxidation of Methylene Blue Dye Part I: Analytical Study, Int. J. Electrochem. Sci., 2011, 6, p 4059–4069.

    Article  Google Scholar 

  39. H.H. Yang, J.H. Je, and K.-B. Lee, Effect of the Nitrogen Partial Pressure on the Preferred Orientation of TiN Thin Films, J. Mater. Sci. Lett., 1995, 14(23), p 1635–1637. https://doi.org/10.1007/bf00422660

    Article  CAS  Google Scholar 

  40. T. Gredić, M. Zlatanović, N. Popović, and Ž Bogdanov, Effect of Plasma Nitriding on the Properties of (Ti, Al)N Coatings Deposited Onto Hot Work Steel Substrates, Thin Solid Films, 1993, 228(1–2), p 261–266. https://doi.org/10.1016/0040-6090(93)90612-s

    Article  Google Scholar 

  41. C. Quaeyhaegens, L.M. Stals, M. Van Stappen, and L. De Schepper, Interface Study of TiN- and Ti-TiN-Coated Stainless Steel AISI 304 with Asymmetric Glancing Angle x-ray Diffraction and Classical Bragg-Brentano x-ray Diffraction, Thin Solid Films, 1991, 197(1–2), p 37–46. https://doi.org/10.1016/0040-6090(91)90219-n

    Article  CAS  Google Scholar 

  42. H.H. Huang, J.L. He, and M.H. Hon, Microstructure and Mechanical Properties of Surface Layer Obtained by Plasma Nitriding and/or TiN Coating on High Speed Steel, Surf. Coat. Technol., 1994, 64(1), p 41–46. https://doi.org/10.1016/s0257-8972(09)90084-6

    Article  CAS  Google Scholar 

  43. M. Zlatanovi’c, T. Gredić, N. Popović, and Ž Bogdanov, Matching of TiN Coating Structures by Plasma Nitriding of Substrates, Vacuum, 1993, 44(2), p 83–88. https://doi.org/10.1016/0042-207x(93)90353-c

    Article  Google Scholar 

  44. M. Jones, I. McColl, and D. Grant, Effect of Substrate Preparation and Deposition Conditions on the Preferred Orientation of TiN Coatings Deposited by RF Reactive Sputtering, Surf. Coat. Technol., 2000, 132(2–3), p 143–151. https://doi.org/10.1016/s0257-8972(00)00867-7

    Article  CAS  Google Scholar 

  45. K. Das, A. Joseph, M. Ghosh, and S. Mukherjee, Microstructure and Wear Behaviour of Pulsed Plasma Nitrided AISI H13 tool Steel, Can. Metall. Q, 2016, 55(4), p 402–408. https://doi.org/10.1080/00084433.2016.1241940

    Article  CAS  Google Scholar 

  46. J.M. O’Brien and D. Goodman, Plasma (Ion) Nitriding of Steels ASM Handbook, ASM International, Materials Park, 1991.

    Google Scholar 

  47. R. Kumar, J. Alphonsa, R. Prakash, K.S. Boob, J. Ghanshyam, P.A. Rayjada, P.M. Raole, and S. Mukherjee, Plasma nitriding of AISI 52100 Ball Bearing Steel and Effect of Heat Treatment on Nitrided Layer, Bull. Mater. Sci., 2011, 34(1), p 153–159. https://doi.org/10.1007/s12034-011-0065-9

    Article  CAS  Google Scholar 

  48. M.A. Varnosfaderani, A. Eslami, N. Saiedi, and A. Bahrami, Metallurgical Aspects of a Blowdown Pipe Failure in a Petrochemical Plant, Eng. Fail. Anal., 2019, 98, p 141–149. https://doi.org/10.1016/j.engfailanal.2019.01.068

    Article  CAS  Google Scholar 

  49. L.C.F. Canale, J. Vatavuk, and G.E. Totten, 12.02–Introduction to Steel Heat Treatment Comprehensive Materials Processing, Elsevier, Amsterdam, 2014.

    Google Scholar 

  50. R.D. Mercado-Solis, J.G. Mata-Maldonado, M.A. Quinones-Salinas, E. Rodriguez-de-Anda, and R. Servín-Castañeda, Micro-Scale Abrasive Wear Testing of CrN Duplex PVD Coating on Pre-Nitrided Tool Steel, Mater. Res., 2017, 20(4), p 1092–1102. https://doi.org/10.1590/1980-5373-mr-2016-0757

    Article  CAS  Google Scholar 

  51. J. Hardell and B. Prakash, High-Temperature Friction and Wear Behaviour of Different Tool Steels During Sliding Against Al-Si-Coated High-Strength Steel, Tribol. Int., 2008, 41(7), p 663–671. https://doi.org/10.1016/j.triboint.2007.07.013

    Article  CAS  Google Scholar 

  52. S.V. Bhaskar and H.N. Kudal, Tribology of Nitrided-Coated Steel-A Review, Arch. Mech. Technol. Mater., 2017, 37(1), p 50–57. https://doi.org/10.1515/amtm-2017-0008

    Article  Google Scholar 

  53. F. Zhang and M. Yan, Microstructure and Wear Resistance of In Situ Formed Duplex Coating Fabricated by Plasma Nitriding Ti Coated 2024 Al Alloy, J. Mater. Sci. Technol., 2014, 30(12), p 1278–1283. https://doi.org/10.1016/j.jmst.2013.10.032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge late Dr. Nikhilesh Bandyopadhyay, Tata Steel Chair Professor, IIEST, Shibpur, for his involvement in the planning and organization of the work and Mr. Olli Orell, Faculty of Engineering and Natural Sciences, Materials Science and Environmental Engineering at Tampere University for his contribution to the wear test. The authors also acknowledge the Board of Research in Fusion Science and Technology (BRFST) for its support of the project in the scheme of the National Fusion Programme (NFP) set up by the Institute for Plasma Research (IPR), Gandhinagar-382044, Gujarat, India.

Funding

Funding information is not available.

Author information

Authors and Affiliations

Authors

Contributions

KD was involved in conceptualization, experiments and writing of original draft; AJ guided the entire experiments; AG helped in the characterization methodology; GS performed the wear test; RR helped in PVD; SM was involved in administration and validated the work; MG was involved in supervision, review, editing and administration. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kalyan Das.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Joseph, A., Ghosh, A. et al. Effect of Pre-treatment and Duration of Pulse Plasma Nitriding on Duplex Plasma Treatment by Physical Vapor Deposition of TiN on AISI D2 Steel. J. of Materi Eng and Perform 32, 9370–9382 (2023). https://doi.org/10.1007/s11665-022-07776-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07776-3

Keywords

Navigation