Skip to main content
Log in

Influence of Metal Transfer Modes on Pore Formation during the Welding Process of AA6082/A360 Dissimilar Aluminum Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the dissimilar welded joints of AA6082/A360 aluminum alloy were prepared by cold metal transfer (CMT) mode, cold metal transfer with pulse (CMT + Pulse) mode, and pulse (Pulse) mode. The influence of the metal transfer modes on the porosity distribution, microstructure, and mechanical properties of dissimilar welded joints were analyzed. The results show that the formation and distribution of weld pores are mainly determined by the hydrogen content of the base metals, cooling rate of the molten pool, driving force, and escaping distance of bubbles. For all the prepared dissimilar welded joints, the regions with the highest porosity appear at the A360 side fusion lines due to the higher hydrogen content of the casting A360 aluminum alloy, followed by the AA6082 side fusion lines and the central regions. With the application of Pulse mode in the welding process, the driving force of bubbles increases and the escape time shortens. The escape time of a bubble was reduced from 4.0 to 3.0 ms compared to CMT welding mode. Therefore, the average porosity of the joints decreases significantly, and the tensile stress increases accordingly. The microstructure of the weld zone gradually changed from long strip grains to equiaxed grains. The tensile stress of the dissimilar welded joint prepared by Pulse mode is 59.2% higher than that of the CMT welded joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. I. Tunc, B.D. Karahan and O. Keles, A Study on the Corrosion Behavior of 7072/3004/7072 Clad Aluminum Alloy in Different Media [J], J. Mater. Eng. Perform., 2020, 29(7), p 4506–4514.

    Article  CAS  Google Scholar 

  2. X. Zhan, Y. Zhao, Z. Liu, Q. Gao and H. Bu, Microstructure and Porosity Characteristics of 5A06 Aluminum Alloy Joints Using Laser-MIG Hybrid Welding [J], J. Manuf. Process, 2018, 35, p 437–445.

    Article  Google Scholar 

  3. M. Ghosh, M.M. Husain, K. Kumar and S.V. Kailas, Friction Stir-Welded Dissimilar Aluminum Alloys: Microstructure, Mechanical Properties, and Physical State [J], J. Mater. Eng. Perform., 2013, 22(12), p 3890–3901.

    Article  CAS  Google Scholar 

  4. L. Chen, C. Wang, L. Xiong, X. Zhang and G. Mi, Microstructural, Porosity and Mechanical Properties of Lap Joint Laser Welding for 5182 and 6061 Dissimilar Aluminum Alloys Under Different Place Configurations [J], Mater. Des., 2020, 191, 108625.

    Article  CAS  Google Scholar 

  5. C. Zhang, M. Gao, D. Wang, J. Yin and X. Zeng, Relationship Between Pool Characteristic and Weld Porosity in Laser Arc Hybrid Welding of AA6082 Aluminum Alloy [J], J. Mater. Process. Technol., 2017, 240, p 217–222.

    Article  CAS  Google Scholar 

  6. Y. Koli, N. Yuvaraj and S. Aravindan, Investigations on Weld Bead Geometry and Microstructure in CMT, MIG Pulse Synergic and MIG Welding of AA6061-T6 [J], Mater. Res. Exp., 2020, 6(12), p 12655.

    Article  Google Scholar 

  7. H. Li, J. Zou, J. Yao and H. Peng, The Effect of TIG Welding Techniques on Microstructure, Properties and Porosity of the Welded Joint of 2219 Aluminum Alloy [J], J. Alloy Comp., 2017, 727, p 531–539.

    Article  CAS  Google Scholar 

  8. K. Li, F.-G. Lu, S.-T. Guo, H.-C. Cui and X.-H. Tang, Porosity Sensitivity of A356 Al Alloy During Fiber Laser Welding [J], Transactions Nonferrous Metals Soc. China, 2015, 25(8), p 2516–2523.

    Article  CAS  Google Scholar 

  9. H. Liu, S. Yang, C. Xie, Q. Zhang and Y. Cao, Microstructure Characterization and Mechanism of Fatigue Crack Initiation Near Pores for 6005A CMT Welded Joint [J], Mater. Sci. Eng. A, 2017, 707, p 22–29.

    Article  CAS  Google Scholar 

  10. P.-C. Huan, X.-N. Wang, J. Zhang, Z.-R. Hu, W.-G. Chen, H. Nagaumi and H.-S. Di, Effect of Wire Composition on Microstructure and Properties of 6063 Aluminium Alloy Hybrid Synchronous Pulse CMT Welded Joints [J], Mater. Sci. Eng. A, 2020, 790, 139713.

    Article  CAS  Google Scholar 

  11. X. Han, Z. Yang, Y. Ma, C. Shi and Z. Xin, Porosity Distribution and Mechanical Response of Laser-MIG Hybrid Butt Welded 6082-T6 Aluminum Alloy Joint [J], Opt. Laser Technol., 2020, 132, 106511.

    Article  CAS  Google Scholar 

  12. M. Wang, Y.D. Zou, H. Hu, G. Meng, P. Cheng and Y.L. Chu, Tensile Properties and Microstructure of Joined Vacuum Die Cast Aluminum Alloy A356 (T6) and Wrought Alloy 6061 [J], Adv. Mater. Res., 2014, 939, p 90–97.

    Article  CAS  Google Scholar 

  13. F. Nie, H. Dong, S. Chen, P. Li, L. Wang, Z. Zhao, X. Li and H. Zhang, Microstructure and Mechanical Properties of Pulse MIG Welded 6061/A356 Aluminum Alloy Dissimilar Butt Joints [J], J. Mater. Sci. Technol., 2018, 34(3), p 551–560.

    Article  CAS  Google Scholar 

  14. P. Li, F. Nie, H. Dong, S. Li, G. Yang and H. Zhang, Pulse MIG Welding of 6061-T6/A356-T6 Aluminum Alloy Dissimilar T-joint [J], J Mater. Eng. Perform., 2018, 27(9), p 4760–4769.

    Article  CAS  Google Scholar 

  15. E. Aldalur, A. Suárez and F. Veiga, Metal Transfer Modes for Wire Arc Additive Manufacturing Al-Mg alloys: Influence of Heat Input in Microstructure and Porosity [J], J. Mater. Process. Technol., 2021, 297, 117271.

    Article  CAS  Google Scholar 

  16. H. Wang, S. Hu, Z. Wang and Q. Xu, Arc Characteristics and Metal Transfer Modes in Arcing-Wire Gas Tungsten Arc Welding [J], Int. J. Adv. Manuf. Technol., 2016, 86(1), p 925–933.

    Article  Google Scholar 

  17. I. Guzmán-Flores, E.E. Granda-Gutiérrez, D.I. Martínez-Delgado, J.L. Acevedo-Dávila, J.C. Díaz-Guillén, B. Vargas-Arista, C.E. Cruz-González. Mechanical Performance and Failure Mechanism of Layered Walls Produced by Wire Arc Additive Manufacturing in Metal Transfer Pulsed Mode [J]. J Mater Eng Perform, (2022)

  18. B. Cong, J. Ding and S. Williams, Effect of Arc Mode in Cold Metal Transfer Process on Porosity of Additively Manufactured Al-6.3%Cu Alloy [J], Int. J. Adv. Manuf. Technol., 2015, 76(9), p 1593–1606.

    Article  Google Scholar 

  19. A. Ramaswamy, S. Malarvizhi and V. Balasubramanian, Effect of Variants of Gas Metal Arc Welding Process on Tensile Properties of AA6061-T6 Aluminium Alloy Joints [J], Int. J. Adv. Manuf. Technol., 2020, 108(9), p 2967–2983.

    Article  Google Scholar 

  20. J. Li, J. Shen, S. Hu, Y. Liang and Q. Wang, Microstructure and Mechanical Properties of 6061/7N01 CMT+P Joints [J], J. Mater. Process. Technol., 2019, 264, p 134–144.

    Article  CAS  Google Scholar 

  21. J. Pang, S. Hu, J. Shen, P. Wang and Y. Liang, Arc Characteristics and Metal Transfer Behavior of CMT+P Welding Process [J], J Mater. Process. Technol., 2016, 238, p 212–217.

    Article  CAS  Google Scholar 

  22. Y. Huang, S. Hou, T. Sun, L. Yang, S. Li and S. Chen, An Improved Model of Porosity Formation During Pulsed GTA Welding of Aluminum Alloys [J], Mater. Sci. Eng. B, 2018, 238–239, p 122–129.

    Article  CAS  Google Scholar 

  23. L. Wang, Y. Suo, C. Wu, D. Wang and Z. Liang, Effect of Pulse Frequency on Microstructure and Mechanical Properties of 2198 Al-Li Alloy Joints Obtained by Ultrahigh-Frequency Pulse AC CMT Welding [J], Materials, 2019, 12(1), p 79.

    Article  CAS  Google Scholar 

  24. C.L.M. da Silva and A. Scotti, The Influence of Double Pulse on Porosity Formation in Aluminum GMAW [J], J. Mater. Process. Technol., 2006, 171(3), p 366–372.

    Article  Google Scholar 

  25. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach and R. Poprawe, Formation and Reduction of Hydrogen Porosity During Selective Laser Melting of AlSi10Mg [J], J. Mater. Process. Technol., 2015, 221, p 112–120.

    Article  CAS  Google Scholar 

  26. M. Jiang, X. Chen, Y. Chen and W. Tao, Mitigation of Porosity Defects in Fiber Laser Welding Under Low Vacuum [J], J. Mater. Process. Technol., 2020, 276, 116385.

    Article  Google Scholar 

  27. X.-L. Gao, L.-J. Zhang, J. Liu and J.-X. Zhang, Porosity and Microstructure in Pulsed Nd:YAG Laser Welded Ti6Al4V Sheet [J], J Mater. Process. Technol., 2014, 214(7), p 1316–1325.

    Article  CAS  Google Scholar 

  28. A. Alikhani, R. Beygi, M. Zarezadeh Mehrizi, F. Nematzadeh and I. Galvão, Effect of Mg and Si on Intermetallic Formation and Fracture Behavior of Pure Aluminum-Galvanized Carbon-Steel Joints made by Weld-Brazing [J], J. Cent. South. Univ., 2021, 28(11), p 3626–3638.

    Article  CAS  Google Scholar 

  29. X.H. Li, L.Z. He, Y.H. Cao, P. Zhu, Y.P. Guo and J.Z. Cui, Effects of Microporosity on the Tensile Properties of Aluminum Alloy [J], Adv Mater. Res., 2012, 422, p 627–631.

    Article  CAS  Google Scholar 

  30. Z. Yang, A. Wang, Z. Weng, D. Xiong, B. Ye and X. Qi, Porosity Elimination and Heat Treatment of Diode Laser-Clad Homogeneous Coating on Cast Aluminum-Copper Alloy [J], Surf. Coat. Technol., 2017, 321, p 26–35.

    Article  CAS  Google Scholar 

  31. M. Kutsuna and Q. Yan, Study on Porosity Formation in Laser Welds in Aluminium Alloys (Report 1): Effects of Hydrogen and Alloying Elements [J], Weld. Int., 1998, 12(12), p 937–949.

    Article  Google Scholar 

  32. K. Schöffski, Die Wasserbestimmung mit Karl-Fischer-Titration [J], Chem. unserer Zeit, 2000, 34(3), p 170–175.

    Article  Google Scholar 

  33. F. Wu, K.V. Falch, D. Guo, P. English, M. Drakopoulos and W. Mirihanage, Time evolved force domination in arc weld pools [J], Mater. Des., 2020, 190, 108534.

    Article  Google Scholar 

  34. Y. Hu, L. Wang, J. Yao, H. Xia, J. Li and R. Liu, Effects of Electromagnetic Compound Field on the Escape Behavior of Pores in Molten Pool During Laser Cladding [J], Surf. Coat. Technol., 2020, 383, 125198.

    Article  CAS  Google Scholar 

  35. H. Guo, J. Hu and H.L. Tsai, Formation of Weld Crater in GMAW of Aluminum Alloys [J], Int. J. Heat Mass Transfer, 2009, 52(23), p 5533–5546.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports from the Natural Science Foundation of Hunan Province (Grant number 2021JJ40096) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant number 51621004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congchang Xu.

Ethics declarations

Conflict of interest

All the authors agree that this manuscript is original and not published anywhere else and there is no conflict of interest in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Xu, C., Zhan, T. et al. Influence of Metal Transfer Modes on Pore Formation during the Welding Process of AA6082/A360 Dissimilar Aluminum Alloys. J. of Materi Eng and Perform 32, 8750–8766 (2023). https://doi.org/10.1007/s11665-022-07757-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07757-6

Keywords

Navigation