Skip to main content

Advertisement

Log in

Corrosion Performance of New-Type Si-Based Weathering Steel in Marine Environment

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Among the materials utilized in civil construction, steels have a prominent position as it combines mechanical strength, workability, and low production costs. Thus, weathering steels have been presented as good materials for applications in outdoor environments since they develop a protective oxide layer during their contact with the atmosphere, resulting in excellent corrosion resistance. In order to evaluate the behavior of three weathering steels with different chemical compositions, cyclic corrosion tests were conducted in a simulated marine environment through a dry/wet cycling device for 6, 15, 30, 45 and 50 cycles, each cycle lasting 7 days. After cyclic corrosion tests, the steels were analyzed by electrochemical impedance spectroscopy. Scanning electron microscopy was used to investigate the formed rust, while the crystallographic structure of corrosion products was determined by x-ray diffraction. The presence of alloying elements such as Mo, Cr, Cu, Ni, and Si improved the steel corrosion resistance by forming a more protective rust layer. The weathering steel with the higher Si content presented the best behavior, suggesting that Si influences the corrosion rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.H. Majzoobi, A.H. Mahmoudi and S. Moradi, Ductile to Brittle Failure Transition of HSLA-100 Steel at High Strain Rates and Subzero Temperatures, Eng. Fract. Mech., 2016 https://doi.org/10.1016/j.engfracmech.2016.03.001

    Article  Google Scholar 

  2. N. Damgaard, S. Walbridge, C. Hansson and J. Yeung, Corrosion Protection and Assessment of Weathering Steel Highway Structures, J Constr. Steel Res., 2010 https://doi.org/10.1016/j.jcsr.2010.04.012

    Article  Google Scholar 

  3. J. Guo, C. Shang, S. Yang, Y. Wang, L. Wang and X. He, Effect of Carbon Content on Mechanical Properties and Weather Resistance of High Performance Bridge Steels, J. Iron. Steel Res. Int., 2009 https://doi.org/10.1016/S1006-706X(10)60029-5

    Article  Google Scholar 

  4. M.Y. Cheng, M. Gouné, M. Verdier, Y. Bréchet and J.R. Yang, Interphase Precipitation in Vanadium-Alloyed Steels: Strengthening Contribution and Morphological Variability With Austenite to Ferrite Transformation, Acta Mater., 2014 https://doi.org/10.1016/j.actamat.2013.11.025

    Article  Google Scholar 

  5. M.A. Altuna, A. Iza-Mendia and I. Gutiérrez, Precipitation of Nb in Ferrite After Austenite Conditioning Part II: Strengthening Contribution in High-Strength Low-Alloy (HSLA) Steels, Metall. Mater. Trans. A, 2012 https://doi.org/10.1007/s11661-012-1270-x

    Article  Google Scholar 

  6. C.L.M. Ocampo, R.O. Mattos, I.C.P. Margarit-Mattos, J.D. Fabris, M.C. Pereira, H.R. Rechenberg and D.L. De Faria, Influence of Cu and Ni on the Morphology and Composition of the Rust Layer of Steels Exposed to Industrial Environment, Hyperfine Interact., 2006 https://doi.org/10.1007/s10751-006-9350-1

    Article  Google Scholar 

  7. A. Raman, S. Nasrazadani and L. Sharma, Morphology of Rust Phases Formed on Weathering Steels in Various Laboratory Corrosion Tests, Metallography, 1989 https://doi.org/10.1016/0026-0800(89)90024-4

    Article  Google Scholar 

  8. M. Morcillo, I. Díaz, B. Chico, H. Cano and D. De la Fuente, Weathering Steels: From Empirical Development to Scientific Design, Corros. Sci., 2014 https://doi.org/10.1016/j.corsci.2014.03.006

    Article  Google Scholar 

  9. S.J. Oh, D.C. Cook and H.E. Townsend, Atmospheric Corrosion of Different Steels in Marine, Rural and Industrial Environments, Corros. Sci., 1999 https://doi.org/10.1016/S0010-938X(99)00005-0

    Article  Google Scholar 

  10. L. Hao, S. Zhang, J. Dong and W. Ke, Evolution of Atmospheric Corrosion of MnCuP Weathering Steel in a Simulated Coastal-industrial Atmosphere, Corros. Sci., 2012 https://doi.org/10.1016/j.corsci.2012.03.010

    Article  Google Scholar 

  11. J.G. Castaño, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa and F. Echeverría, Atmospheric Corrosion of Carbon Steel in Colombia, Corros. Sci., 2010 https://doi.org/10.1016/j.corsci.2009.09.006

    Article  Google Scholar 

  12. J.A. Mejía Gómez, J. Antonissen, C. Palacio and E. De Grave, Effects of Si as Alloying Element on Corrosion Resistance of Weathering Steel, Corros. Sci., 2012, 59, p 1989–203. https://doi.org/10.1016/j.corsci.2012.03.004

    Article  CAS  Google Scholar 

  13. C. Chiavari, E. Bernardi, C. Martini, F. Passarini, A. Motori and M.C. Bignozzi, Atmospheric Corrosion of Cor-Ten Steel With Different Surface Finish: Accelerated Ageing and Metal Release, Mater. Chem. Phys., 2012 https://doi.org/10.1016/j.matchemphys.2012.07.014

    Article  Google Scholar 

  14. P. Liu, L. Hu, X. Zhao, Q. Zhang, Z. Yu, J. Hu, Y. Chen, F. Wu and F. Cao, Investigation of Microstructure and Corrosion Behavior of Weathering Steel in Aqueous Solution Containing Different Anions for Simulating Service Environments, Corros. Sci., 2020 https://doi.org/10.1016/j.corsci.2020.108686

    Article  Google Scholar 

  15. L. Wang, J. Wang and W. Hu, Influence of Cl-on the Initial Corrosion of Weathering Steel in Simulated Marine-Industrial Atmosphere, Int. J. of Electrochem. Sci., 2018 https://doi.org/10.20964/2018.08.19

    Article  Google Scholar 

  16. Y.S. Choi, J.J. Shim and J.G. Kim, Effects of Cr, Cu, Ni and Ca on the Corrosion Behavior of Low Carbon Steel in Synthetic Tap Water, J. Alloys Compd., 2005 https://doi.org/10.1016/j.jallcom.2004.07.081

    Article  Google Scholar 

  17. G. Khalaj, H. Pouraliakbar, N. Arab and M. Nazerfakhari, Correlation of Passivation Current Density and Potential by Using Chemical Composition and Corrosion Cell Characteristics in HSLA Steels, Meas. Sci. Technol., 2015 https://doi.org/10.1016/j.measurement.2015.07.048

    Article  Google Scholar 

  18. E.A. Alvarenga and V.F.C. Lins, Atmospheric Corrosion Evaluation of Electrogalvanized, Hot-Dip Galvanized and Galvannealed Interstitial Free Steels Using Accelerated Field and Cyclic Tests, Surf. Coat. Technol., 2016 https://doi.org/10.1016/j.surfcoat.2016.04.021

    Article  Google Scholar 

  19. J.K. Saha, Corrosion of Constructional Steels in Marine and Industrial Environment: Frontier Work in Atmospheric Corrosion, Springer Ser, India, 2013. https://doi.org/10.1007/978-81-322-0720-7

    Book  Google Scholar 

  20. J. Jia, X. Cheng, X. Yang, X. Li and W. Li, A Study for Corrosion Behavior of a New-Type Weathering Steel Used in Harsh Marine Environment, Constr. Build. Mater., 2020 https://doi.org/10.1016/j.conbuildmat.2020

    Article  Google Scholar 

  21. T. Nishimura, Rust Formation and Corrosion Performance of Si-and Al-Bearing Ultrafine Grained Weathering Steel, Corros. Sci., 2008 https://doi.org/10.1016/j.corsci.2008.01.025

    Article  Google Scholar 

  22. P. Montoya, I. Díaz, N. Granizo, D. de la Fuente and M. Morcillo, An Study on Accelerated Corrosion Testing of Weathering Steel, Mater. Chem. Phys., 2013, 142(1), p 220–228. https://doi.org/10.1016/j.matchemphys.2013.07.009

    Article  CAS  Google Scholar 

  23. H. Cano, I. Díaz, D.D.L. Fuente, B. Chico and M. Morcillo, Effect of Cu, Cr and Ni Alloying Elements on Mechanical Properties and Atmospheric Corrosion Resistance of Weathering Steels in Marine Atmospheres of Different Aggressivities, Mater. and Corros., 2018 https://doi.org/10.1002/maco.201709656

    Article  Google Scholar 

  24. M. Morcillo, B. Chico, E. Otero and L. Mariaca, Effect of Marine Aerosol on Atmospheric Corrosion, Mater. Perform., 1999, 38(4), p 72–77.

    CAS  Google Scholar 

  25. Y. Ma, Y. Li and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009 https://doi.org/10.1016/j.corsci.2009.02.009

    Article  Google Scholar 

  26. Z. Wang, J. Liu, L. Wu, R. Han and Y. Sun, Study of the Corrosion Behavior of Weathering Steels in Atmospheric Environments, Corros. Sci., 2013 https://doi.org/10.1016/j.corsci.2012.09.020

    Article  Google Scholar 

  27. Y.Y. Chen, H.J. Tzeng, L.I. Wei and H.C. Shih, Mechanical Properties and Corrosion Resistance of Low-Alloy Steels in Atmospheric Conditions Containing Chloride, Mater. Sci. Eng. A, 2005 https://doi.org/10.1016/j.msea.2005.02.064

    Article  Google Scholar 

  28. K. Gong, M. Wu and G. Liu, Comparative Study on Corrosion Behavior of Rusted X100 Steel in Dry/Wet Cycle and Immersion Environments, Constr. Build. Mater., 2020 https://doi.org/10.1016/j.conbuildmat.2019.117440

    Article  Google Scholar 

  29. S. Fajardo, D.M. Bastidas, M. Criado and J.M. Bastidas, Electrochemical Study on the Corrosion Behavior of a New Low-Nickel Stainless Steel in Carbonated Alkaline Solution in the Presence of Chlorides, Electrochim. Acta, 2014 https://doi.org/10.1016/j.electacta.2014.02.107

    Article  Google Scholar 

  30. T. Nishimura, Corrosion Behavior of Silicon-Bearing Steel in a Wet/Dry Environment Containing Chloride Ions, Mater. Trans., 2007 https://doi.org/10.2320/matertrans.MRA2007039

    Article  Google Scholar 

  31. Y. Jia, C. Zhou, Y. Gao, Y. Zhou, M. Liu and H. Wang, Atmospheric Corrosion Resistance of Weathering Angle Steels in a Simulated Industrial Atmosphere, J. Mater. Eng. Perform., 2020 https://doi.org/10.1007/s11665-020-04666-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPEMIG, CAPES-PROEX, and CNPq for the research fellowships made available to students and for their financial support. Thanks to UFMG Microscopy Center for providing excellent scientific support. We also thank USIMINAS company for the samples supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael F. Assumpção.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assumpção, R.F., Silva, A.P., Lins, V.F.C. et al. Corrosion Performance of New-Type Si-Based Weathering Steel in Marine Environment. J. of Materi Eng and Perform 32, 8541–8548 (2023). https://doi.org/10.1007/s11665-022-07737-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07737-w

Keywords

Navigation