Skip to main content

Advertisement

Log in

Corrosion Behaviors of Carbon Steel and Ni-Advanced Weathering Steel Exposed to Tropical Marine Atmosphere

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behaviors of carbon steel and Ni-advanced weathering steel exposed to tropical marine atmosphere were investigated by using electrochemical impedance spectroscopy, x-ray diffraction, transmission electron microscope and x-ray photoelectron spectroscopy measurements. The results showed that Ni had almost no effect on corrosion kinetics and electrochemical performance of Ni-advanced weathering steel in mild atmosphere. Conversely, Ni-advanced weathering steel in marine atmosphere showed a significant superiority in improving corrosion resistance compared with carbon steel. Moreover, the mass formation of NiFe2O4 in the inner rust layer promoted the stability of the corrosion resistance improvement rate of Ni-advanced weathering steel with the increase in exposure time. Therefore, Ni-advanced weathering steel seemed to be more suitable for the harsh marine atmospheric environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I. Díaz, H. Cano, D. De la Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric Corrosion of Ni-Advanced Weathering Steels in Marine Atmospheres of Moderate Salinity, Corros. Sci., 2013, 76, p 348–360

    Article  CAS  Google Scholar 

  2. X.H. Chen, J.H. Dong, E.H. Han, and W. Ke, Effect of Ni on the Ion-Selectivity of Rust Layer on Low Alloy Steel, Mater. Lett., 2007, 61, p 4050–4053

    Article  CAS  Google Scholar 

  3. Y.L. Zhou, J. Chen, Y. Xu, and Z.Y. Liu, Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a Cl Containing Environment, J. Mater. Sci. Technol., 2013, 29, p 168–174

    Article  CAS  Google Scholar 

  4. T. Nishimura and N. Rajendran, Nano Structure and Electrochemical Behavior of the Rust Formed on Ni Bearing Steel After Exposure Tests in a Tropical Indian Environment, Mater. Trans., 2014, 10, p 1547–1552

    Article  CAS  Google Scholar 

  5. I. Díaz, H. Cano, P. Lopesino, D. De la Fuente, B. Chico, J.A. Jiménez, S.F. Medina, and M. Morcillo, Five-Year Atmospheric Corrosion of Cu, Cr and Ni Weathering Steels in a Wide Range of Environments, Corros. Sci., 2018, 141, p 146–157

    Article  CAS  Google Scholar 

  6. T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Effect of Co and Ni on the Corrosion Behavior of Low Alloy Steels in Wet/Dry Environments, Corros. Sci., 2000, 42, p 1611–1621

    Article  CAS  Google Scholar 

  7. G.Q. Fu, M.Y. Zhu, and X.L. Gao, Rust Layer Formed on Low Carbon Weathering Steels with Different Mn, Ni Contents in Environment Containing Chloride Ions, Mater. Sci., 2016, 22, p 501–505

    Google Scholar 

  8. I. Sugimoto and K. Kita, Evaluation of Applicability for Ni-Advanced Weathering Steels and Bridge High-Performance Steels to Railway Steel Bridges, Q. Rep. RTRI., 2010, 51, p 33–37

    Article  Google Scholar 

  9. N.S. Palsson, K. Wongpinkaew, P. Khamsuk, S. Sorachot, and W. Pongsaksawad, Outdoor Atmospheric Corrosion of Carbon Steel and Weathering Steel Exposed to the Tropical-Coastal Climate of Thailand, Mater. Corros., 2019, https://doi.org/10.1002/maco.201911340

    Article  Google Scholar 

  10. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. De la Fuente, Characterization of Corrosion Products Formed on Ni 2.4 wt.%–Cu 0.5 wt.%–Cr 0.5 wt.% Weathering Steel Exposed in Marine Atmospheres, Corros. Sci., 2014, 87, p 438–451

    Article  CAS  Google Scholar 

  11. X.Q. Cheng, Z. Jin, M. Liu, and X.G. Li, Optimizing the Nickel Content in Weathering Steels to Enhance Their Corrosion Resistance in Acidic Atmospheres, Corros. Sci., 2017, 115, p 135–142

    Article  CAS  Google Scholar 

  12. W. Wu, X.Q. Cheng, H.X. Hou, B. Liu, and X.G. Li, Insight Into the Product Film Formed on Ni-Advanced Weathering Steel in a Tropical Marine Atmosphere, Appl. Surf. Sci., 2018, 436, p 80–89

    Article  CAS  Google Scholar 

  13. X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Mater Sci: Share Corrosion Data, Nat. News., 2015, 527, p 441

    Article  CAS  Google Scholar 

  14. M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. De la Fuente, Atmospheric Corrosion Data of Weathering Steels, A Review, Corros. Sci., 2013, 77, p 6–24

    Article  CAS  Google Scholar 

  15. Z. Wang, F. Yin, L. Wu, and L.H. Li, Corrosion Resistance on High Strength BAINITIC steel and 09CuPCrNi After Wet-Dry Cyclic Conditions, J. Iron. Steel Res. Int., 2013, 20, p 72

    Article  Google Scholar 

  16. T. Nishimura, Electrochemical Behaviour and Structure of Rust Formed on Si-and Al-Bearing Steel After Atmospheric Exposure, Corros. Sci., 2010, 52, p 3609–3614

    Article  CAS  Google Scholar 

  17. S. Hara, T. Kamimura, H. Miyuki, and M. Yamashita, Taxonomy for Protective Ability of Rust Layer Using Its Composition Formed on Weathering Steel Bridge, Corros. Sci., 2007, 49, p 1131–1142

    Article  CAS  Google Scholar 

  18. Y.S. Choi and J.G. Kim, Aqueous Corrosion Behavior of Weathering Steel and Carbon Steel in acid-Chloride Environments, Corrosion, 2000, 56, p 1202–1210

    Article  CAS  Google Scholar 

  19. Q.X. Li, Z.Y. Wang, W. Han, and E.H. Han, Characterization of the Rust Formed on Weathering Steel Exposed to Qinghai Salt Lake Atmosphere, Corros. Sci., 2008, 50, p 365–371

    Article  CAS  Google Scholar 

  20. ISO 9223, Corrosion of Metals and Alloys, Corrosivity of Atmospheres-Classification (2012)

  21. X. Zhang, S.W. Yang, W.H. Zhang, H. Guo, and X.L. He, Influence of outer Rust Layers on Corrosion of Carbon Steel and Weathering Steel During Wet–Dry Cycles, Corros. Sci., 2014, 82, p 165–172

    Article  CAS  Google Scholar 

  22. D.C. Kong, X.Q. Ni, C.F. Dong, X.W. Lei, L. Zhang, C. Man, J.Z. Yao, X.Q. Cheng, and X.G. Li, Bio-functional and Anti-corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Design., 2018, 152, p 88–101

    Article  CAS  Google Scholar 

  23. Q.H. Zhao, W. Liu, Y.C. Zhu, B.L. Zhang, S.Z. Li, and M.X. Lu, Effect of Small Content of Chromium on Wet-Dry Acid Corrosion Behavior of Low Alloy Steel, Acta Metall. Sin., 2017, 30, p 164–175

    Article  CAS  Google Scholar 

  24. D.C. Kong, C.F. Dong, X.G. Ni, L. Zhang, J.Z. Yao, C. Man, X.Q. Cheng, K. Xiao, and X.G. Li, Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35, p 1499–1507

    Article  Google Scholar 

  25. M. Yamashita, H. Konishi, J.I. Mizuki, and H. Uchida, Nanostructure of Protective Rust Layer on Weathering Steel Examined Using Synchrotron Radiation X-rays, Mater. Trans., 2004, 45, p 1920–1924

    Article  CAS  Google Scholar 

  26. D.C. Kong, C.F. Dong, X.G. Ni, L. Zhang, H. Luo, R.X. Li, L. Wang, C. Man, and X.G. Li, Superior Resistance to Hydrogen Damage for Selective Laser Melted 316L Stainless Steel in a Proton Exchange Membrane Fuel Cell Environment, Corros. Sci., 2020, 166, p 108425

    Article  CAS  Google Scholar 

  27. M. Morcillo, R. Wolthuis, J. Alcántara, B. Chico, I. Díaz, and D. De la Fuente, Scanning Electron Microscopy/Micro-Raman: A Very Useful Technique for Characterizing the Morphologies of Rust Phases Formed on Carbon Steel in Atmospheric Exposures, Corrosion, 2016, 72, p 1044–1054

    CAS  Google Scholar 

  28. J.H. Dong, Rusting Evolution of Mn-Cu Alloying Steel in a Simulated Coastal Environment, Corros. Sci. Prot. Technol., 2010, 22, p 261–265

    CAS  Google Scholar 

  29. D.C. Kong, X.Q. Ni, C.F. Dong, L. Zhang, C. Man, J.Z. Yao, K. Xiao, and X.G. Li, Heat Treatment Effect on the Microstructure and Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting for Proton Exchange Membrane Fuel Cells, Electrochim. Acta, 2018, 276, p 293–303

    Article  CAS  Google Scholar 

  30. Z.Y. Cui, L.W. Wang, H.T. Ni, W.K. Hao, C. Man, S.S. Chen, X. Wang, Z.Y. Liu, and X.G. Li, Influence of Temperature on the Electrochemical and Passivation Behavior of 2507 Super Duplex Stainless Steel in Simulated Desulfurized Flue Gas Condensates, Corros. Sci., 2017, 118, p 31–48

    Article  CAS  Google Scholar 

  31. Q. Hou, Z.Y. Liu, C.T. Li, and X.G. Li, Effects of Lead on Oxidation Behavior of Alloy 690TT Within a High Temperature Aqueous Environment, Appl. Surf. Sci., 2017, 426, p 514–526

    Article  CAS  Google Scholar 

  32. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Evolution of Corrosion of MnCuP Weathering Steel Submitted to Wet/Dry Cyclic Tests in a Simulated Coastal Atmosphere, Corros. Sci., 2012, 58, p 175–180

    Article  CAS  Google Scholar 

  33. F. Corvo, N. Betancourt, and A. Mendoza, Outdoor–indoor Corrosion of Metals in Tropical Coastal Atmospheres, Corros. Sci., 1995, 37, p 1889

    Article  Google Scholar 

  34. D. de la Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo, Long-Term Atmospheric Corrosion of Mild Steel, Corros. Sci., 2011, 53, p 604

    Article  CAS  Google Scholar 

  35. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Atmospheric Corrosion Resistance of MnCuP Weathering Steel in Simulated Environments, Corros. Sci., 2011, 53, p 4187–4192

    Article  CAS  Google Scholar 

  36. H. Cano, I. Díaz, D. De la Fuente, B. Chico, and M. Morcillo, Effect of Cu, Cr and Ni Alloying Elements on Mechanical Properties and Atmospheric Corrosion Resistance of Weathering Steels in Marine Atmospheres of Different Aggressivities, Mater. Corros., 2018, 69, p 8–19

    Article  CAS  Google Scholar 

  37. W. Ke and J.H. Dong, Study on the Rusting Evolution and the Performance of Resisting to Atmospheric Corrosion for Mn-Cu Steel, Acta Metall. Sin., 2010, 46, p 1365–1378

    Article  CAS  Google Scholar 

  38. H. Tanaka, R. Mishima, N. Hatanaka, T. Ishikawa, and T. Nakayama, Formation of Magnetite Rust Particles by Reacting Iron Powder with Artificial α-, β-and γ-FeOOH in Aqueous Media, Corros. Sci., 2014, 78, p 384–387

    Article  CAS  Google Scholar 

  39. J. Alcántara, B. Chico, J. Simancas, I. Díaz, and M. Morcillo, Marine Atmospheric Corrosion of Carbon Steel, A Review, Materials, 2017, 10, p 406

    Article  CAS  Google Scholar 

  40. H. Tamura, The Role of Rusts in Corrosion and Corrosion Protection of Iron and Steel, Corros. Sci., 2008, 50, p 1872–1883

    Article  CAS  Google Scholar 

  41. Y.M. Fan, W. Liu, S.M. Li, B. Wongpat, Y.G. Zhao, B.J. Dong, T.Y. Zhang, T. Chowwanonthapunya, and X.G. Li, Evolution of Rust Layers on Carbon Steel and Weathering Steel in High Humidity and Heat Marine Atmospheric Corrosion, J. Mater. Sci. Technol., 2020, 39, p 190

    Article  Google Scholar 

  42. X.G. Feng, X.Y. Lu, Y. Zuo, N. Zhuang, and D. Chen, The Effect of Deformation on Metastable Pitting of 304 Stainless Steel in Chloride Contaminated Concrete Pore Solution, Corros. Sci., 2016, 103, p 223–229

    Article  CAS  Google Scholar 

  43. M. Morcillo, B. Chico, D. De la Fuente, J. Alcántara, I.O. Wallinder, and C. Leygraf, On the Mechanism of Rust Exfoliation in Marine Environments, J. Electrochem. Soc., 2017, 164, p C8–C16

    Article  CAS  Google Scholar 

  44. B. Liu, X. Mu, Y. Yang, L. Hao, X.Y. Ding, J.H. Dong, Z. Zhang, H.X. Hou, and W. Ke, Effect of Tin Addition on Corrosion Behavior of a Low-Alloy Steel in Simulated Costal-Industrial Atmosphere, J. Mater. Sci. Technol., 2019, 35, p 1228–1239

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the funding support from the National Key R&D Program of China (2016YFE0203600), the National Natural Science Foundation of China (51571027) and the National Environmental Corrosion Platform (NECP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Liu, W., Sun, Z. et al. Corrosion Behaviors of Carbon Steel and Ni-Advanced Weathering Steel Exposed to Tropical Marine Atmosphere. J. of Materi Eng and Perform 29, 6417–6426 (2020). https://doi.org/10.1007/s11665-020-05153-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05153-6

Keywords

Navigation