Skip to main content
Log in

Investigation on Microstructure Evolution and Visible-Infrared Property of Vacuum-Heat-Treated TiN Film

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

TiN films were prepared by direct current (DC) reactive magnetron sputtering technique and then vacuum-heat-treated at different temperatures (400, 600 and 800 °C) for 3600 s to improve their properties through increasing the crystallinity and eliminating the lattice defects of the films. Optical properties in the visible-infrared region of TiN films after vacuum heat treatment were investigated. Results revealed that optical reflectance of TiN films first increased and then decreased after the vacuum heat treatment. The reflectance of all the films was below 14%. With the heat treatment temperature rising from 400 to 600 °C, infrared emissivity of TiN films first dropped and then went up at 800 °C. As the heat treatment temperature was 600 °C, the infrared emissivity of TiN films could be reduced to 0.488 and was the lowest. Results showed that vacuum heat treatment could reduce the infrared emissivity of TiN films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Qi, X. Wang, Y.Z. Cheng, R.Z. Gong, and B.W. Li, Design and Characterization of One-Dimensional Photonic Crystals Based on ZnS/Ge for Infrared-Visible Compatible Stealth Applications, Opt. Mater., 2016, 62, p 52–56.

    Article  CAS  Google Scholar 

  2. Y. Shen, J.Q. Zhang, Y.Q. Pang, J.F. Wang, H. Ma, and S.B. Qu, Transparent Broadband Metamaterial Absorber Enhanced by Water-Substrate Incorporation, Opt. Express, 2018, 26, p 15665–15674.

    Article  CAS  Google Scholar 

  3. C. Ji, Y. Liu, J. Xu, Y.Y. Li, Y.D. Shang, and X.L. Su, Enhanced Microwave Absorption Properties of Biomass-Derived Carbon Decorated with Transition Metal Alloy at Improved Graphitization Degree, J. Alloy. Compd., 2021, 890, p 161834.

    Article  Google Scholar 

  4. L.P. Chen, Z.Y. Ren, X.M. Liu, K. Wang, and Q. Wang, Infrared-Visible Compatible Stealth Based on Al-SiO2 Nanoparticle Composite Film, Opt. Commun., 2021, 482, p 126608.

    Article  CAS  Google Scholar 

  5. K.W. Sun, X.F. Tang, C.L. Yang, and D. Jin, Preparation and Performance of Low Emissivityal-Doped ZnO Films for Energy-Saving Glass, Ceram. Int., 2018, 44, p 19597–19602.

    Article  CAS  Google Scholar 

  6. M. Yuste, R.E. Galindo, S. Carvalho, J.M. Albella, and O. Sanchez, Improving the Visible Transmittance of Low-E Titanium Nitride Based Coatings for Solar Thermal Applications, Appl. Surf. Sci., 2011, 258, p 1784–1788.

    Article  CAS  Google Scholar 

  7. Z.B. Huang, W.C. Zhou, X.Y. Tang, F. Luo, and D.M. Zhou, High-Temperature Application of the Low-Emissivity Au/Ni Films on Alloys, Appl. Surf. Sci., 2010, 256, p 6893–6898.

    Article  CAS  Google Scholar 

  8. Z.L. Zhang, A. Ghasemi, N. Koutná, Z. Xu, T. Grünstäudl, K.X. Song, D. Holec, Y.B. He, P.H. Mayrhofer, and M. Bartosik, Correlating Point Defects with Mechanical Properties in Nanocrystalline TiN Thin Films, Mater. Des., 2021, 207, p 109844.

    Article  CAS  Google Scholar 

  9. G. Xian, J. Xiong, H.Y. Fan, F. Jiang, H.B. Zhao, L.J. Xian, and Z.H. Qin, Mechanical and Wear Properties of TiN Films on Differently Pretreated TiCN-Based Cermets, Appl. Surf. Sci., 2021, 570, p 151180.

    Article  CAS  Google Scholar 

  10. L.L. Lu, F. Luo, Z.B. Huang, W.C. Zhou, and D.M. Zhu, Influence of the Nitrogen Flow Rate on the Infrared Emissivity of TiNx Films, Infrared Phys. Technol., 2018, 88, p 144–148.

    Article  CAS  Google Scholar 

  11. W.Y. Ge, Z. Chang, A. Siddique, B. Shi, and C. Liu, Large-Area Fabrication of TiN Thin Films with Photothermal Effect via PECVD, Ceram. Int., 2020, 46, p 7355–7361.

    Article  CAS  Google Scholar 

  12. S. Khan, S.N. Chen, Y.C. Ma, M. Haq, Y.D. Li, M. Nisar, R. Khan, Y. Liu, J.X. Wang, and G.R. Han, Structural and Hydrophilic Properties of TiN Films Prepared by Ultrasonic Atomization Assisted Spray Method Under Low Temperature, Surf. Coat. Technol., 2020, 393, p 125824.

    Article  CAS  Google Scholar 

  13. S. Udaiyappan, P. Kuppusami, R. Ramaseshan, and S. Dhanalakshmi, Structural, Nanomechanical and Electrochemical Properties of TiC and TiN Films Prepared by Pulsed DC Magnetron Sputtering Technique, Mater. Today., 2021, 47, p 1091–1098.

    Article  Google Scholar 

  14. S. Chowdhury, R. Gupta, S. Prakash, L. Behera, D.M. Phase, and M. Gupta, Synthesis and Study of Highly Dense and Smooth TiN Thin Films, Mater. Chem. Phys., 2021, 267, p 124648.

    Article  CAS  Google Scholar 

  15. H. Liang, J. Xu, D. Zhou, X. Sun, S.C. Chua, and Y.Z. Bai, Thickness Dependent Microstructural and Electrical Properties of TiN Thin Films Prepared by DC Reactive Magnetron Sputtering, Ceram. Int., 2016, 42, p 2642–2647.

    Article  CAS  Google Scholar 

  16. M. Maarouf, M.B. Haider, M.F. Al-Kuhaili, A. Aljaafari, and J.Y. Khan, Negative Magnetoresistance in Iron Doped TiN Thin Films Prepared by Reactive Magnetron Sputtering, J. Magn. Magn. Mater., 2020, 514, p 167235.

    Article  CAS  Google Scholar 

  17. F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Méndez, J.A. Mendes, E. Alves, Ph. Goudeau, J.P. Rivière, F. Ribeiro, I. Moutinho, K. Pischow, and J. de Rijk, Influence of Nitrogen Content on the Structural, Mechanical and Electrical Properties of TiN Thin Films, Surf. Coat. Technol., 2005, 191, p 317–323.

    Article  CAS  Google Scholar 

  18. Y.C. Yang, C.H. Tsau, J.W. Yeh, and S.K. Chen, Low-Resistivity Oxides in TixFeCoNi Thin Films After Vacuum Annealing, Surf. Eng., 2018, 34, p 667–673.

    Article  CAS  Google Scholar 

  19. L. Radjehi, L. Aissani, A. Djelloul, S. Lamri, K. Nomenyo, S. Achache, G. Lerondel, and F. Sanchette, Effect of Vacuum Annealing on the Structural and Optical Properties of Sputtered Cu4O3 Thin Films, Surf. Eng., 2021, 37, p 422.

    Article  CAS  Google Scholar 

  20. B.T. Kearney, B. Jugdersuren, J.C. Culbertson, P.A. Desario, and X. Liu, Substrate and Annealing Temperature Dependent Electrical Resistivity of Sputtered Titanium Nitride Thin Films, Thin Solid Films, 2018, 661, p 78–83.

    Article  CAS  Google Scholar 

  21. Z. Cheng, H.R. Peng, G.W. Xie, and Y.L. Shi, Annealing Studies of TiN Films Deposited by Plasma-Assisted CVD, Surf. Coat. Technol., 2001, 138, p 237–241.

    Article  CAS  Google Scholar 

  22. N.K. Ponon, D.J.R. Appleby, E. Arac, P.J. King, S. Ganti, K.S.K. Kwa, and A. O’Neill, Effect of Deposition Conditions and Post Deposition Anneal on Reactively Sputtered Titanium Nitride Thin Films, Thin Solid Films, 2015, 578, p 31–37.

    Article  CAS  Google Scholar 

  23. Y.X. Xi, H.Q. Fan, and W.G. Liu, The Effect of Annealing Treatment on Microstructure and Properties of TiN Films Prepared by Unbalanced Magnetron Sputtering, J. Alloy. Compd., 2010, 496, p 695–698.

    Article  CAS  Google Scholar 

  24. J. Pelleg, L.Z. Zevin, S. Lungo, and N. Croitoru, Reactive-Sputter-Deposited TiN Films on Glass Substrates, Thin Solid Films, 1991, 197, p 117–128.

    Article  CAS  Google Scholar 

  25. U.C. Oh and J.H. Je, Effects of Strain Energy on the Preferred Orientation of TiN Thin Films, J. Appl. Phys., 1993, 74, p 1692.

    Article  CAS  Google Scholar 

  26. H.L. Liang, J. Xu, D.Y. Zhou, X. Sun, S.C. Chu, and Y.Z. Bai, Thickness Dependent Microstructural and Electrical Properties of TiN Thin Films Prepared by DC Reactive Magnetron Sputtering, Ceram. Int., 2016, 42, p 2642–2647.

    Article  CAS  Google Scholar 

  27. S.K. Mishra, R. Kumar, M. Soni, L.C. Sreemany, and Pathak, Ultrathin to Nano Thickness TiN Coatings: Processing, Structural, Mechanical Behavior, J. Mater. Eng. Perform., 2015, 24, p 5013–5021.

    Article  CAS  Google Scholar 

  28. C. Gebauer, P. Fischer, M. Wassner, T. Diemant, Z. Jusys, N. Husing, and R.J. Behm, Performance of Titanium Oxynitrides in the Electrocatalytic Oxygen Evolution Reaction, Nano Energy, 2016, 29, p 136–148.

    Article  CAS  Google Scholar 

  29. P. Osiceanu, An XPS Study on Ion Beam Induced Oxidation of Titanium Silicide, Appl. Surf. Sci., 2006, 253, p 381–384.

    Article  CAS  Google Scholar 

  30. S. Logothetidis, E.I. Meletis, G. Stergioudis, and A.A. Adjaottor, Room Temperature Oxidation Behavior of TiN Thin Films, Thin Solid Films, 1999, 338, p 304–313.

    Article  CAS  Google Scholar 

  31. L.Y. Sheng, Y.N. Xiao, C. Jiao, B.N. Du, Y.M. Li, Z.Z. Wu, and L.Q. Shao, Influence of Layer Number on Microstructure, Mechanical Properties and Wear Behavior of the TiN/Ti Multilayer Coatings Fabricated by High-Power Magnetron Sputtering Deposition, J. Manuf. Process., 2021, 70, p 529.

    Article  Google Scholar 

  32. A. Mumtaz and W.H. Class, Color of Titanium Nitride Prepared by Reactive dc Magnetron Sputtering, J. Vac. Sci. Technol., 1982, 20, p 345–348.

    Article  CAS  Google Scholar 

  33. N. Kumar, J.T. Mcginn, K. Pourrezaei, B. Lee, and E.C. Douglas, Transmission Electron Microscopy Studies of Brown and Golden Titanium Nitride Thin Films as Diffusion Barriers in Very Largescale Integrated Circuits, J. Vac. Sci. Technol. A, 1988, 6, p 1602–1608.

    Article  CAS  Google Scholar 

  34. Z.M. Zhang, X.H. Wu, and C.J. Fu, Validity of Kirchhoff’s Law for Semitransparent Films Made of Anisotropic Materials, J. Quant. Spectrosc. Radiat., 2020, 245, p 106904.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Program Funded by Education Department of Shaanxi Province (No. 20JK0650), Science and Technology Guiding Project of China Textile Industry Association (No. 2021040), and Shaanxi Provincial Science and Technology Department (No. 2020JQ-827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Lu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Xu, J., Dong, J. et al. Investigation on Microstructure Evolution and Visible-Infrared Property of Vacuum-Heat-Treated TiN Film. J. of Materi Eng and Perform 32, 7796–7801 (2023). https://doi.org/10.1007/s11665-022-07684-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07684-6

Keywords

Navigation