Skip to main content
Log in

Microstructural Evolution and Applied Performance of a Highly Undercooled Bulk Ni-5% Cu Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Rapid solidification with a high degree of undercooling is an important method for investigating the metastable solidification of metallic materials. In this paper, we study the microstructural evolution and applied performance characteristics of bulk Ni-5% Cu alloys with degrees of undercooling ranging from 53 to 380 K by a glass fluxing technique. The microstructure homogeneity increases, and the grain refinement increases with increasing degree of undercooling. The global microstructure transforms from a coarse dendrite microstructure into a refined equiaxed grain microstructure as the degree of undercooling increases. Additionally, EDS results illustrate that the segregation less solidification with a remarkable solute trapping effect is preferentially achieved under high undercooling conditions. The compressive yield strength, Vickers hardness and bending modulus of the bulk Ni-5% Cu alloy all increase with increasing melt undercooling. Moreover, the soft magnetic properties of the alloy are modulated when the degree of undercooling changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during this study are available from the author on reasonable request.

References

  1. H.S. Lee, D.H. Kim, D.S. Kim, and K.B. Yoo, Microstructural Changes by Heat Treatment for Single Crystal Superalloy Exposed at High Temperature, J. Alloys Compd., 2013, 561, p 135–141.

    Article  CAS  Google Scholar 

  2. H. Kasturi, T. Paul, S. Biswas, S.H. Alavi, and S.P. Harimkar, Sliding Wear Behavior of Spark-Plasma-Sintered Fe-Based Amorphous Alloy Coatings on Cu-Ni Alloy, J. Mater. Eng. Perform., 2018, 27, p 3629–3635.

    Article  CAS  Google Scholar 

  3. J. Tang and X. Xue, Numerical Simulation of Multi-Grain Structure and Prediction of Microsegregation in Binary Ni-Cu Alloy Under Isothermal Conditions, Mater. Sci. Eng. A, 2009, 499, p 64–68.

    Article  Google Scholar 

  4. L.F. Du, P. Zhang, J. Chen, and H.L. Du, Effects of Lateral Constraints on the Morphology Evolution and Solute Diffusion During Solidification in a Binary Alloy, Appl. Phys. A, 2017, 123(311), p 1–11.

    Google Scholar 

  5. X.H. Wu, G. Wang, L.Z. Zhao, D.C. Zeng, and Z.W. Liu, Phase Field Simulation of Dendrite Growth in Binary Ni-Cu Alloy Under the Applied Temperature Gradient, Comp. Mater. Sci., 2016, 117, p 286–293.

    Article  CAS  Google Scholar 

  6. Y.W. Kim, Y.S. Chung, E. Choi, and T.H. Nam, Microstructure and Shape Memory Characteristics of Powder-Metallurgical-Processed Ti-Ni-Cu Alloys, Metall. Mater. Trans. A, 2012, 43A, p 2932–2937.

    Article  Google Scholar 

  7. D. Liu, W.A. Miller, and K.T. Aust, Diffusion Induced Grain Boundary Migration in a Rapidly Solidified, Oxidized Ni-Cu Alloy, Scripta Metall., 1987, 21, p 643–647.

    Article  CAS  Google Scholar 

  8. H.P. Wang, W.J. Yao, and B.B. Wei, Remarkable Solute Trapping Within Rapidly Growing Dendrites, Appl. Phys. Lett., 2006, 89(20), p 215502.

    Article  Google Scholar 

  9. Y. Ruan, X.J. Wang, and S.Y. Chang, Two Hardening Mechanisms in High-Level Undercooled Al-Cu-Ge Alloys, Acta Mater., 2015, 91, p 183–191.

    Article  CAS  Google Scholar 

  10. X. Li, A. Gagnoud, Y. Fautrelle, Z.M. Ren, R. Moreau, Y.D. Zhang, and C. Esling, Dendrite Fragmentation and Columnar-to-Equiaxed Transition During Directional Solidification at Lower Growth Speed Under a Strong Magnetic Field, Acta Mater., 2012, 60(8), p 3321–3332.

    Article  CAS  Google Scholar 

  11. F. Liu, G. Yang, and X. Guo, Research of Grain Refinement in Undercooled DD3 Single Crystal Superalloy, Mater. Sci. Eng. A, 2001, 311(1–2), p 54–63.

    Google Scholar 

  12. N. Yan, Z.H. Wang, Y. Ruan, and B.B. Wei, Solute Redistribution and Micromechanical Properties of Rapidly Solidified Multicomponent Ni-Based Alloys, Sci. Chin., 2019, 62(3), p 472–477.

    Article  CAS  Google Scholar 

  13. L.G. Cao, R.F. Cochrane, and A.M. Mullis, Lamella Structure Formation in Drop-Tube Processed Ni-25.3 at.% Si Alloy, J. Alloys Compd., 2015, 615(S1), p S599–S601.

    Google Scholar 

  14. N. Haque, R.F. Cochrane, and A.M. Mullis, Disorder-Order Morphologies in Drop-Tube Processed Ni3Ge: Dendritic and Seaweed Growth, J. Alloys Compd., 2017, 707, p 327–331.

    Article  CAS  Google Scholar 

  15. O. Oloyede, T.D. Bigg, R.F. Cochrane, and A.M. Mullis, Microstructure Evolution and Mechanical Properties of Drop-Tube Processed, Rapidly Solidified Grey Cast Iron, Mater. Sci. Eng. A, 2016, 654, p 143–150.

    Article  CAS  Google Scholar 

  16. S. Li, H.F. Wang, and F. Liu, Microstructure and Microtexture Evolution of Undercooled Ni-15% Cu Alloy, Trans. Nonferrous Met. Soc. Chin., 2013, 23, p 3265–3270.

    Article  CAS  Google Scholar 

  17. E.G. Castle, A.M. Mullis, and R.F. Cochrane, Evidence for an Extended Transition in Growth Orientation and Novel Dendritic Seaweed Structures in Undercooled Cu-8.9wt.%Ni, J. Alloys Compd., 2014, 615, p S612–S615.

    Article  CAS  Google Scholar 

  18. E.G. Castle, A.M. Mullis, and R.F. Cochrane, Evidence for an Extensive, Undercooling-Mediated Transition in Growth Orientation, and Novel Dendritic Seaweed Microstructures in Cu–8.9 wt.% Ni, Acta Mater., 2014, 66, p 378–387.

    Article  CAS  Google Scholar 

  19. Y.K. An, X.L. Xu, L. Liang, Y.H. Zhao, and H. Hou, Microstructure Transformation and Grain Refinement During Non-Equilibrium Solidification of a Highly Undercooled Alloy System, J. Alloys Compd., 2021, 864, p 158821.

    Article  CAS  Google Scholar 

  20. K. Ma, Y.H. Zhao, X.L. Xu, and H. Hou, The Effect of Undercooling on Growth Velocity and Microstructure of Ni95Cu5 Alloys, J. Cryst. Growth, 2019, 513, p 30–37.

    Article  CAS  Google Scholar 

  21. P. Lv and H.P. Wang, Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt, Metall. Mater. Trans. B, 2018, 49B, p 499–507.

    Google Scholar 

  22. C.K. Deng, H.X. Jiang, J.Z. Zhao, J. He, and L. Zhao, Study on the Solidification of Ag-Ni Monotectic Alloy, Acta Metall. Sin., 2020, 56(2), p 212–219.

    CAS  Google Scholar 

  23. R. Ahmad, R.F. Cochrane, and A.M. Mullis, The Formation of Regular αNi-γ(Ni31Si12) Eutectic Structures from Undercooled Ni-25 at.% Si Melts, Intermetallics, 2012, 22, p 55–61.

    Article  CAS  Google Scholar 

  24. T. Koseki and M.C. Flemings, Solidification of Undercooled Fe-Cr-Ni Alloys: Part III, Phase Select. Chill Cast., 1997, 28(11), p 2385–2395.

    Google Scholar 

  25. S.J. Chen, D.G. Howitt, and A.B. Harker, A Dynamical Bragg Equation for High-Order Laue Zone Reflections, Scanning, 2000, 22, p 157.

    Google Scholar 

  26. R.D. Li, X.S. Cao, Y.D. Qu, Y. Xie, R.X. Li, and C. Tian, Effect of Super High Pressure on Crystal Structure and Microstructure of ZA27 Alloy, Chin. J. Nonferrous Met., 2009, 19(9), p 1572.

    Article  Google Scholar 

  27. N. Yan, L. Hu, Y. Ruan, W.L. Wang, and B.B. Wei, Liquid State Undercoolability and Crystal Growth Kinetics of Ternary Ni-Cu-Sn Alloys, Chin. Phys. Lett., 2016, 33(10), p 108103.

    Article  Google Scholar 

  28. Z. Hussain, H. Jang, H.J. Choi, and B.S. Choi, Microstructure, Mechanical Behavior, and Thermal Conductivity of Three-Dimensionally Interconnected Hexagonal Boron Nitride - Reinforced Cu-Ni Composite, J. Mater. Eng. Perform., 2022, 31, p 2792–2800.

    Article  CAS  Google Scholar 

  29. D. Goranova, G. Avdeev, and R. Rashkov, Electrodeposition and Characterization of Ni-Cu Alloys, Surf. Coat. Technol., 2014, 240, p 204–210.

    Article  CAS  Google Scholar 

  30. G.J. Lee, J.H. Lee, D.J. Lee, K.I. Park, C.K. Jeong, J.J. Park, and M.K. Lee, Synthesis and Characterization of Carbon-Coated Cu-Ni Alloy Nanoparticles and Their Application in Conductive Films, Appl. Surf. Sci., 2021, 566, p 150672.

    Article  CAS  Google Scholar 

  31. M. Negem and H. Nady, Electroplated Ni-Cu Nanocrystalline Alloys and Their Electrocatalytic Activity for Hydrogen Generation Using Alkaline Solutions, Int. J. Hydrog. Energy, 2017, 42(47), p 28386–28396.

    Article  CAS  Google Scholar 

  32. H. Nady and M. Negem, Ni-Cu Nano-Crystalline Alloys for Efficient Electrochemical Hydrogen Production in Acid Water, RSC Adv., 2016, 6, p 51111–51119.

    Article  CAS  Google Scholar 

  33. X.L. Xu, Y.H. Zhao, and H. Hou, Observation of Dendrite Growth Velocity and Microstructure Transition in Highly Undercooled Single Phase Alloys, Mater. Charact., 2019, 155, p 109793.

    Article  CAS  Google Scholar 

  34. E.G. Castle, A.M. Mullis, and R.F. Cochrane, Mechanism Selection for Spontaneous Grain Refinement in Undercooled Metallic Melts, Acta Mater., 2014, 77, p 76–84.

    Article  CAS  Google Scholar 

  35. A. Bagri, G. Weber, J.C. Stinville, W. Lenthe, T. Pollock, C. Woodward, and S. Ghosh, Microstructure and Property-Based Statistically Equivalent Representative Volume Elements for Polycrystalline Ni-Based Superalloys Containing Annealing Twins, Metall. Mater. Trans. A, 2018, 49, p 5727–5743.

    Article  CAS  Google Scholar 

  36. T. Pinomaa and N. Provatas, Quantitative Phase Field Modeling of Solute Trapping and Continuous Growth Kinetics in Quasi-Rapid Solidification, Acta Mater., 2019, 168, p 167–177.

    Article  CAS  Google Scholar 

  37. P.K. Galenko and D. Jou, Rapid Solidification as Non-Ergodic Phenomenon, Phys. Rep., 2019, 818, p 1–70.

    Article  CAS  Google Scholar 

  38. G.D. Merz and T.Z. Kattamis, Mechanical Behavior of Cast Single Phase Alloys Solidified from Undercooled Melts, Metall. Trans. A, 1977, 8A, p 295–298.

    Article  CAS  Google Scholar 

  39. C.Y. Zhang, Q.F. Wang, J.X. Rena, R.X. Li, M.Z. Wang, F.C. Zhang, and K.M. Sun, Effect of Martensitic Morphology on Mechanical Properties of an as-Quenched and Tempered 25CrMo48V Steel, Mater. Sci. Eng. A, 2012, 534, p 339–346.

    Article  CAS  Google Scholar 

  40. O. Heczko, P. Svec, D. Janickovic, and K. Ullakko, Magnetic Properties of Ni-Mn-Ga Ribbon Prepared by Rapid Solidification, IEET. T Magn., 2002, 38(5), p 2841–2843.

    Article  CAS  Google Scholar 

  41. R.H. Yu, S. Basu, Y. Zhang, A. Parvizi-Majidi, and John Q. Xiao, Pinning Effect of the Grain Boundaries on Magnetic Domain Wall in FeCo-Based Magnetic Alloys, J. Appl. Phys., 1999, 85(9), p 6655–6559.

    Article  CAS  Google Scholar 

  42. S. Olvera, J. Sánchez-Marcos, F.J. Palomares, E. Salas, E.M. Arce, and P. Herrasti, Characterization and Corrosion Behaviour of CoNi Alloys Obtained by Mechanical Alloying, Mater. Charact., 2014, 93, p 79–86.

    Article  CAS  Google Scholar 

  43. N. Hassan, I.A. Shah, M. Jelani, M. Naeem, S. Riaz, S. Naseem, F. Xu, and Z. Ullah, Effect of Ni-Mn Ratio on Structural, Martensitic and Magnetic Properties of Ni-Mn-Co-Ti Ferromagnetic Shape Memory Alloys, Mater. Res. Exp., 2018, 5(8), p 086102.

    Article  Google Scholar 

  44. S. Tebbakh, A. Beniaiche, N. Fenineche, A. Azizi, G. Schmerber, and A. Dinia, Electrochemical Nucleation Behaviors and Properties of Electrodeposited Co-Ni Alloy Thin Films, Trans. Inst. Met. Finish., 2013, 91(1), p 17–22.

    Article  CAS  Google Scholar 

  45. V. Vega, L. Gonzalez, J. Garcia, W.O. Rosa, D. Serantes, V.M. Prida, G. Badini, R. Varga, J.J. Sunol, and B. Hernando, Ni59.0Mn23.5In17.5 Heusler Alloy as the Core of Glass-Coated Microwires: Magnetic Properties and Magnetocaloric Effect, J. Appl. Phys., 2012, 112, p 033905.

    Article  Google Scholar 

  46. J. Echigoya and R. Yue, Grain-Size Dependence of Coercive Force in Sputtered and Annealed Iron Films, J. Mater. Sci., 2005, 40(12), p 3209–3212.

    Article  CAS  Google Scholar 

  47. D.S. Yao, S.H. Ge, X.Y. Zhou, and H.P. Zuo, Grain Size Dependence of Coercivity in Magnetic Metal-Insulator Nanogranular Films with Uniaxial Magnetic Anisotropy, J. Appl. Phys., 2010, 107(7), p 073902.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos, 51871186, 52074230 and U1904214). The analyses from the Analytical & Testing Center of Northwestern Polytechnical University are appreciated. We would like to thank the director of LMSS—Prof. B. Wei—for his consistent support.

Author information

Authors and Affiliations

Authors

Contributions

JZL: Conceptualization, methodology, data curation, investigation, writing-original draft, writing-review & editing. NY: Funding acquisition, project administration, investigation, supervision, writing – review & editing.

Corresponding author

Correspondence to Na Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jz., Yan, N. Microstructural Evolution and Applied Performance of a Highly Undercooled Bulk Ni-5% Cu Alloy. J. of Materi Eng and Perform 32, 7162–7172 (2023). https://doi.org/10.1007/s11665-022-07626-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07626-2

Keywords

Navigation