Skip to main content
Log in

Microstructure Effects on Mechanical Properties of FeNiCrCoCu Nanoporous High-Entropy Alloy with Bicontinuous Characteristics

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, a series of atomic simulations are performed to pinpoint the effects of microstructure on the mechanical properties of FeNiCrCoCu nanoporous high-entropy alloy (NP-HEA). Such numerical simulations corroborate that the most paramount parameter determining the mechanical properties is the relative density. The stiffness and strength of NP-HEA have a positive relationship with the relative density. However, the specific surface area has a negligible effect on the mechanical properties. Scaling laws between mechanical properties and relative density are investigated. It is found that the elastic modulus has a quadratic relationship with the relative density, which suggests the principal deformation mechanism in the elastic domain is the bending of ligaments. The quadratic relationship is also observed between ultimate strength and relative density. Dislocation propagation and the formation of stacking fault are the major plastic events of NP-HEA under uniaxial tensile loading. In addition, the effects of temperature, fraction of elements, and deformation rate on the tensile behaviors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z.F. Zhang, C.Y. Wang, P. Liu, K.M. Reddy, X.D. Wang, M.W. Chen, and S.X. Song, Deformation Behavior of a Nanoporous Metallic Glass at Room Temperature, Int. J. Plast, 2022, 152, p 103232.

    Article  CAS  Google Scholar 

  2. H. Liu, H.Y. Qin, J.L. Kang, L.Y. Ma, G.X. Chen, Q. Huang, Z.J. Zhang, E.Z. Liu, H.M. Lu, J.X. Li, and N.Q. Zhao, A Freestanding Nanoporous NiCoFeMoMn High-Entropy Alloy as an Efficient Electrocatalyst for Rapid Water Splitting, Chem. Eng. J., 2022, 435, p 134898.

    Article  CAS  Google Scholar 

  3. Y. Grosu, Resolving the Compromise Between Porosity and Stability for Trimodal Hierarchical Macro-nanoporous Metals The Case of Porous Copper Prepared by Dealloying Al-Cu-Mg Alloy of Close-to-Eutectic Composition, Appl. Surf. Sci., 2020, 527, p 146897.

    Article  CAS  Google Scholar 

  4. K. Kong, J. Hyun, Y. Kim, W. Kim, and D. Kim, Nanoporous Structure Synthesized by Selective Phase Dissolution of AlCoCrFeNi High Entropy Alloy and Its Electrochemical Properties as Supercapacitor Electrode, J. Power Sources, 2019, 437, p 226927.

    Article  CAS  Google Scholar 

  5. L.Z. Liu, Y.Y. Zhang, H. Xie, and H.J. Jin, Transition from Homogeneous to Localized Deformation in Nanoporous Gold, Phys. Rev. Lett., 2021, 127(9), p 095501.

    Article  CAS  Google Scholar 

  6. S.Y. Li, X.W. Tang, H.L. Jia, H.L. Li, G.Q. Xie, X.J. Liu, X. Lin, and H.J. Qiu, Nanoporous High-Entropy Alloys with Low Pt Loadings for High-Performance Electrochemical Oxygen Reduction, J. Catal., 2020, 383, p 164–171.

    Article  CAS  Google Scholar 

  7. G. Fang, J.J. Gao, J. Lv, H.L. Jia, H.L. Li, W.H. Liu, G.Q. Xie, Z.H. Chen, Y. Huang, Q.H. Yuan, X.J. Liu, X. Lin, S.H. Sun, and H.J. Qiu, Multi-component Nanoporous Alloy/(oxy)hydroxide for Bifunctional Oxygen Electrocatalysis and Rechargeable Zn-air Batteries, Appl. Catal. B-Environ., 2020, 268, p 118431.

    Article  CAS  Google Scholar 

  8. G. Pia, M. Brun, F. Aymerich, and F. Delogu, Gyroidal Structures as Approximants to Nanoporous Metal Foams: Clues from Mechanical Properties, J. Mater. Sci., 2017, 52(2), p 1106–1122.

    Article  CAS  Google Scholar 

  9. W. Jiao, P. Liu, H.J. Lin, W. Zhou, Z. Wang, T. Fujita, A. Hirata, H.W. Li, and M.W. Chen, Tunable Nanoporous Metallic Glasses Fabricated by Selective Phase Dissolution and Passivation for Ultrafast Hydrogen Uptake, Chem. Mater., 2017, 29(10), p 4478–4483.

    Article  CAS  Google Scholar 

  10. N. Badwe, X.Y. Chen, and K. Sieradzki, Mechanical Properties of Nanoporous Gold in Tension, Acta Mater., 2017, 129, p 251–258.

    Article  CAS  Google Scholar 

  11. K.R. Mangipudi, E. Epler, and C.A. Volkert, Topology-Dependent Scaling Laws for the Stiffness and Strength of Nanoporous Gold, Acta Mater., 2016, 119, p 115–122.

    Article  CAS  Google Scholar 

  12. N. Mameka, K. Wang, J. Markmann, E.T. Lilleodden, and J. Weissmuller, Nanoporous Gold-Testing Macro-scale Samples to Probe Small-scale Mechanical Behavior, Mater. Res. Lett., 2016, 4(1), p 27–36.

    Article  Google Scholar 

  13. E.J. Gwak and J.Y. Kim, Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement, Nano Lett., 2016, 16(4), p 2497–2502.

    Article  CAS  Google Scholar 

  14. S. Shi, Y. Li, B.N. Ngo-Dinh, J. Markmann, and J. Weissmuller, Scaling Behavior of Stiffness and Strength of Hierarchical Network Nanomaterials, Science, 2021, 371(6533), p 1026–1033.

    Article  CAS  Google Scholar 

  15. H. Jeon, J.H. Woo, E. Song, and J.Y. Kim, Ligament Size Effect in Creep of Nanoporous Gold, Int. J. Plast, 2022, 150, p 103192.

    Article  CAS  Google Scholar 

  16. S.P. Patil, V.G. Parale, H.H. Park, and B. Markert, Molecular Dynamics and Experimental Studies of Nanoindentation on Nanoporous Silica Aerogels, Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process., 2019, 742, p 344–352.

    Article  CAS  Google Scholar 

  17. C. Liu and P.S. Branicio, Efficient Generation of Non-cubic Stochastic Periodic Bicontinuous Nanoporous Structures, Comput. Mater. Sci., 2019, 169, p 109101.

    Article  CAS  Google Scholar 

  18. Y. Liao, M.Z. Xiang, G.M. Li, K. Wang, X.Y. Zhang, and J. Chen, Molecular dynamics studies on energy dissipation and void collapse in graded nanoporous nickel under shock compression, Mech. Mater., 2018, 126, p 13–25.

    Article  Google Scholar 

  19. J.J. Li, Y.H. Xian, H.J. Zhou, R.N. Wu, G.M. Hu, and R. Xia, Mechanical Properties of Nanocrystalline Nanoporous Gold Complicated by Variation of Grain and Ligament: A Molecular Dynamics Simulation, Sci. China-Technol. Sci., 2018, 61(9), p 1353–1363.

    Article  CAS  Google Scholar 

  20. J.J. Li, X.D. Hu, Y.H. Zhang, C.Y. Tian, G.M. Hu, S. Liu, and R. Xia, A Concurrent High Strength and Ductility of 3D Gyroidal Nanoporous Metallic Glasses, J. Non-Cryst. Solids, 2021, 556, p 120567.

    Article  CAS  Google Scholar 

  21. G.M. Li, Y.B. Wang, M.Z. Xiang, Y. Liao, K. Wang, and J. Chen, Shock Response of Nanoporous Magnesium by Molecular Dynamics Simulations, Int. J. Mech. Sci., 2018, 141, p 143–156.

    Article  Google Scholar 

  22. G.Z. Voyiadjis, M.H. Saffarini, and C.J. Ruestes, Characterization of the Strain Rate Effect under Uniaxial Loading for Nanoporous Gold, Comput. Mater. Sci., 2021, 194, p 110425.

    Article  CAS  Google Scholar 

  23. J.J. Li, Y.Q. Hu, Y.H. Zhang, and R. Xia, Optimum Atomic Concentration in Structurally Disordered Nanoporous Pt–Co Alloys with the Strongest Mechanical Properties, Microporous Mesoporous Mater., 2022, 331, p 111656.

    Article  CAS  Google Scholar 

  24. J.J. Li, Y.H. Zhang, C.Y. Tian, H.J. Zhou, G.M. Hu, and R. Xia, Structurally Ordered Nanoporous Pt-Co Alloys with Enhanced Mechanical Behaviors in Tension, Microporous Mesoporous Mater., 2020, 295, p 109955.

    Article  CAS  Google Scholar 

  25. A. Neogi, L.J. He, and N. Abdolrahim, Atomistic Simulations of Shock Compression of Single Crystal and Core-Shell Cu@Ni Nanoporous Metals, J. Appl. Phys., 2019, 126(1), p 015901.

    Article  Google Scholar 

  26. A. Neogi and N. Mitra, On Shock Response of Nano-Void Closed/Open Cell Copper Material: Non-equilibrium Molecular Dynamic Simulations, J. Appl. Phys., 2014, 115(1), p 013504.

    Article  Google Scholar 

  27. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18(9), p 1758–1765.

    Article  CAS  Google Scholar 

  28. J. Li, Q.H. Fang, B. Liu, and Y. Liu, Transformation Induced Softening and Plasticity in High Entropy Alloys, Acta Mater., 2018, 147, p 35–41.

    Article  CAS  Google Scholar 

  29. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw, Deviation from High-Entropy Configurations in the Atomic Distributions of a Multi-principal-Element Alloy, Nat. Commun., 2015, 6(1), p 5964.

    Article  Google Scholar 

  30. O.R. Deluigi, R.C. Pasianot, F.J. Valencia, A. Caro, D. Farkas, and E.M. Bringa, Simulations of Primary Damage in a High Entropy Alloy: Probing Enhanced Radiation Resistance, Acta Mater., 2021, 213, p 116951.

    Article  CAS  Google Scholar 

  31. J.Y. Li, L.G. Dong, X.W. Dong, W.H. Zhao, J.H. Liu, J.X. Xiong, and C.Y. Xu, Study on Wear Behavior of FeNiCrCoCu High Entropy Alloy Coating on Cu Substrate Based on Molecular Dynamics, Appl. Surf. Sci., 2021, 570, p 151236.

    Article  CAS  Google Scholar 

  32. F.S. Tan, J. Li, H. Feng, Q.H. Fang, C. Jiang, Y. Liu, and P.K. Liaw, Entropy-Induced Transition on Grain-Boundary Migration in Multi-principal Element Alloys, Scripta Mater., 2021, 194, p 113668.

    Article  CAS  Google Scholar 

  33. C. Zhang, J.K. Zhu, C.Y. Ji, Y.Z. Guo, R. Fang, S.W. Mei, and S. Liu, Laser Powder Bed Fusion of High-Entropy Alloy Particle-Reinforced Stainless Steel with Enhanced Strength, Ductility, and Corrosion Resistance, Mater. Des., 2021, 209, p 109950.

    Article  CAS  Google Scholar 

  34. J. Peng, B.B. Xie, X. Zeng, Q.H. Fang, B. Liu, P.K. Liaw, and J. Li, Vacancy Dependent Mechanical Behaviors of High-Entropy Alloy, Int. J. Mech. Sci., 2022, 218, p 107065.

    Article  Google Scholar 

  35. Y.C. Cai, Y. Chen, Z. Luo, F. Gao, and L. Li, Manufacturing of FeCoCrNiCux Medium-Entropy Alloy Coating Using Laser Cladding Technology, Mater. Des., 2017, 133, p 91–108.

    Article  CAS  Google Scholar 

  36. J. Li, H.T. Chen, Q.H. Fang, C. Jiang, Y. Liu, and P.K. Liaw, Unraveling the Dislocation-Precipitate Interactions in High-Entropy Alloys, Int. J. Plast, 2020, 133, p 102819.

    Article  CAS  Google Scholar 

  37. A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Deshmukh, and T. Shanmugasundaram, High Temperature Wear in CoCrFeNiCux High Entropy Alloys: The Role of Cu, Scripta Mater., 2019, 161, p 28–31.

    Article  CAS  Google Scholar 

  38. A.S. Tran, Deformation Mechanism and Tensile Properties of Nanocrystalline CoCrCuFeNi High-Entropy Alloy: A Molecular Dynamics Simulation Study, Phys. Scr., 2021, 96(12), p 125410.

    Article  Google Scholar 

  39. L. Zhang and Y. Shibuta, Inverse Hall-Petch Relationship of High-Entropy Alloy by Atomistic Simulation, Mater. Lett., 2020, 274, p 128024.

    Article  CAS  Google Scholar 

  40. Y. Tian, Q. Fang, and J. Li, Molecular Dynamics Simulations for Nanoindentation Response of Nanotwinned FeNiCrCoCu High Entropy Alloy, Nanotechnology, 2020, 31(46), p 465701.

    Article  CAS  Google Scholar 

  41. J.W. Cahn, Phase Separation by Spinodal Decomposition in Isotropic Systems, J. Chem. Phys., 1965, 42(1), p 93–99.

    Article  CAS  Google Scholar 

  42. A.A. Vega and R.C. Newman, Nanoporous Metals Fabricated through Electrochemical Dealloying of Ag-Au-Pt with Systematic Variation of Au: Pt Ratio, J. Electrochem. Soc., 2013, 161(1), p C1–C10.

    Article  Google Scholar 

  43. J.J. Li, C.Y. Tian, W.J. Hong, S.C. Duan, Y.H. Zhang, W.W. Wu, G.M. Hu, and R. Xia, Shock Responses of Nanoporous gold Subjected To Dynamic Loadings: Energy Absorption, Int. J. Mech. Sci., 2021, 192, p 106191.

    Article  Google Scholar 

  44. X.Y. Sun, G.K. Xu, X.Y. Li, X.Q. Feng, and H.J. Gao, Mechanical Properties and Scaling Laws of Nanoporous Gold, J. Appl. Phys., 2013, 113(2), p 023505.

    Article  Google Scholar 

  45. M.H. Saffarini, G.Z. Voyiadjis, and C.J. Ruestes, Temperature Effect on Nanoporous Gold under Uniaxial Tension and Compression, Comput. Mater. Sci., 2021, 200, p 110766.

    Article  CAS  Google Scholar 

  46. C. Soyarslan, S. Bargmann, M. Pradas, and J. Weissmuller, 3D Stochastic Bicontinuous Microstructures: Generation, Topology and Elasticity, Acta Mater., 2018, 149, p 326–340.

    Article  CAS  Google Scholar 

  47. C. Liu, S.Y. Yuan, and P.S. Branicio, Bicontinuous Nanoporous Design Induced Homogenization of Strain Localization in Metallic Glasses, Scripta Mater., 2021, 192, p 67–72.

    Article  CAS  Google Scholar 

  48. Y.H. Xian, J.J. Li, R.N. Wu, and R. Xia, Softening of Nanocrystalline Nanoporous Platinum: A Molecular Dynamics Simulation, Comput. Mater. Sci., 2018, 143, p 163–169.

    Article  CAS  Google Scholar 

  49. X.Y. Sun, G.K. Xu, J.H. Zhang, and Y.J. Xu, Effects of Interface Cohesion on Mechanical Properties of Interpenetrating Phase Nanocomposites, Micro Nano Lett., 2014, 9(10), p 697–701.

    Article  Google Scholar 

  50. L.F. Zeng, C.P. You, X.F. Cai, C.M. Wang, X.H. Zhang, and T.X. Liang, Preparation of Nanoporous CoCr Alloy by Dealloying CrCoNi Medium Entropy Alloys, J. Market. Res., 2020, 9(3), p 6909–6915.

    CAS  Google Scholar 

  51. L. Zhang, H. Chang, A. Hirata, H. Wu, Q.K. Xue, and M. Chen, Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions, ACS Nano, 2013, 7(5), p 4595–4600.

    Article  CAS  Google Scholar 

  52. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2010, 18(1), p 015012.

    Article  Google Scholar 

  53. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.

    Article  CAS  Google Scholar 

  54. A. Stukowski, Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Modell. Simul. Mater. Sci. Eng., 2012, 20(4), p 045021.

    Article  Google Scholar 

  55. K.S. Cheung and S. Yip, Atomic-Level Stress in an Inhomogeneous System, J. Appl. Phys., 1991, 70(10), p 5688–5690.

    Article  CAS  Google Scholar 

  56. X.L. Zhou, L.Q. Wang, and C.Q. Chen, Strengthening Mechanisms in Nanoporous Metallic Glasses, Comput. Mater. Sci., 2018, 155, p 151–158.

    Article  CAS  Google Scholar 

  57. Y.H. Zhang, J.J. Li, H.J. Zhou, Y.Q. Hu, S.H. Ding, and R. Xia, Cold Welding Behavior of Metallic Glass Nanowires: Insights from large-Scale Numerical Simulations, J. Mater. Sci., 2021, 56(28), p 15906–15920.

    Article  CAS  Google Scholar 

  58. L. Jie-Jie, L. Bin-Bin, X. Yue-Hui, H. Guo-Ming, and X. Re, Characterization of Nanoporous Silver Mechanical Properties by Molecular Dynamics Simulation, Acta Phys. Sin., 2018, 67(5), p 056101.

    Article  Google Scholar 

  59. Y.H. Zhang, Y.H. Xian, J.J. Li, S.H. Ding, S. Liu, and R. Xia, Atomistic Investigation on the Mechanical Properties of 3D Nanoporous Metallic Glasses under Uniaxial Tension and Compression, Mater. Today Commun., 2021, 27, p 102460.

    Article  CAS  Google Scholar 

  60. Y.H. Zhang, J.J. Li, Y.Q. Hu, S.H. Ding, F.Y. Du, and R. Xia, Characterization of the Deformation Behaviors under Uniaxial Stress for Bicontinuous Nanoporous Amorphous Alloys, Phys. Chem. Chem. Phys., 2022, 24(2), p 1099–1112.

    Article  CAS  Google Scholar 

  61. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure & Properties, Cambridge University Press, Cambridge, 1997.

    Book  Google Scholar 

  62. J.J. Li, Y.H. Xian, H.J. Zhou, R.N. Wu, G.M. Hu, and R. Xia, Microstructure-Sensitive Mechanical Properties of Nanoporous Gold: A Molecular Dynamics Study, Modell. Simul. Mater. Sci. Eng., 2018, 26(7), p 075003.

    Article  Google Scholar 

  63. Z. Chen, H. Liu, W. Li, J. Mo, M. Wang, Y. Zhang, J. Li, Q. Jiang, W. Yang, and C. Tang, Chiral Metallic Glass Nanolattices with Combined Lower Density and Improved Auxeticity, Phys. Chem. Chem. Phys., 2019, 21(37), p 20588–20594.

    Article  CAS  Google Scholar 

  64. H.S. Liu, Z. Chen, J.Y. Mo, M.Z. Wang, Y. Zhang, and W.M. Yang, Brittle-to-Ductile Transition in Monatomic Tantalum Nanoporous Metallic Glass, J. Non-Cryst. Solids, 2019, 506, p 6–13.

    Article  CAS  Google Scholar 

  65. G.C. Ma, Z.W. Zhu, Z. Wang, and H.F. Zhang, Deformation Behavior of the Zr53.5Cu26.5Ni5Al12Ag3 Bulk Metallic Glass Over a Wide Range of Strain Rate and Temperatures, J. Mater. Sci. Technol., 2015, 31(9), p 941–945.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

ZS took part in data curation; formal analysis; investigation; writing—original draft; conceptualization; visualization. YZ involved in funding acquisition; project administration; software; resources; conceptualization; software; writing—review & editing.

Corresponding author

Correspondence to Yuhang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Zhang, Y. Microstructure Effects on Mechanical Properties of FeNiCrCoCu Nanoporous High-Entropy Alloy with Bicontinuous Characteristics. J. of Materi Eng and Perform 32, 5653–5665 (2023). https://doi.org/10.1007/s11665-022-07467-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07467-z

Keywords

Navigation